STOCHASTIC DIFFERENTIAL EQUATIONS IN A DIFFERENTIABLE MANIFOLD

KIYOSI ITÔ

The theory of stochastic differential equations in a differentiable manifold has been established by many authors from different view-points, especially by P. Lévy [2] 1), F. Perrin [1], A. Kolmogoroff [1] [2] and K. Yosida [1] [2]. It is the purpose of the present paper to discuss it by making use of stochastic integrals. ${ }^{2}$

In §1 we shall state some properties of stochastic integrals for the later use. We shall discuss stochastic differential equations in the r-dimensional Euclidean space in $\S 2$ and in a differentiable manifold in $\S 3$.

1. Some properties of stochastic integrals. Throughout this note we fix an r-dimensional Brownian motion ${ }^{3)}$:

$$
\begin{equation*}
\beta(t, \omega)=\left(\beta^{1}(t, \omega), \quad \beta^{2}(t, \omega), \ldots, \beta^{\Upsilon}(t, \omega)\right), \quad-\infty<t<\infty, \tag{1.1}
\end{equation*}
$$

$\omega(\in \Omega)$ being the probability parameter with the probability law P and t keing the time parameter. We assume that any function of t and ω appearing in this note satisfies the following two conditions:
(1.2) it is measurable in (t, ω),
(1.3) the value it takes at $t=t_{0}$ is a B-measurable function ${ }^{4)}$ of the joint variable ($\beta(t, \omega), \tau \leqq t_{0}$) for any t_{0}.

If it holds

$$
\begin{equation*}
\xi(s, \omega)-\xi(t, \omega)=\int_{t}^{s} a(\tau, \omega) d \tau+\sum_{i=1}^{r} \int_{t}^{s} b_{i}(\tau, \omega) d \beta^{i}(\tau, \omega),{ }^{5} \tag{1.4}
\end{equation*}
$$

$$
u \leqq s \leqq t \leqq v, \omega \in \Omega_{1}(\cong \Omega)
$$

Received March 10, 1950.

1) The numbers in [] denote those of the references at the end of this paper.
${ }^{2)}$ K. Itô [1], [3].
2) By an r-dimensional Brownian motion we understand an r-dimensional random process whose components are all one dimensional Brownian motion (Cf. P. Lévy [1] p. 166, $\S 52$, J. L. Doob [1] Theorem 3.9) independent of each other.
${ }^{4}$) A mapping f from R^{A} into R is called to be B-measurable if the inverse image of any Borel subset of R by f is also a Borel subset of R^{A}, that is an element of the least completely additive class that contains all rectangular subsets of R^{A}. A random variable $\zeta(\omega)$ is called to be a B-measurable function of the joint variable ($\xi_{\alpha}(\omega), \alpha \in A$) if and only if there exists a B-measurable mapping f from R^{A} into R such that $\xi(\omega)=f(\xi \alpha(\omega), \alpha \in A)$ for every ω. Cf. K. Itô [3] §1.
${ }^{5)}$ The sense of this integral is to be understcod as a stochastic integral introduced by the author. Cf. K. Itô [1], [3] §7, §8.
