Ed Cline* Nagoya Math. J. Vol. 41 (1971), 55–67

SOME GROUPS WHOSE S₃-SUBGROUPS HAVE MAXIMAL CLASS

ED CLINE

1. Introduction

In this paper, we investigate several classes of groups, among which the most general is defined as follows:

DEFINITION 1.1. A finite group G is a SR-group if it contains a subgroup P_1 of order 3 satisfying:

- (a) A/S_3 -subgroup P_2 of $N_G(P_1)$ is elementary of order 9;
- (b) $N_G(P_2)/P_2$ acts semi-regularly by conjugation on the conjugates of P_1 contained in P_2 .

To emphasize the role of P_1 , we sometimes say G is a SR-group with respect to P_1 .

The main result of this paper is

THEOREM 1.2. If G is a SR-group, then $0^{3}(G)$ is a proper subgroup of G.

It is clear that the definition of SR-groups can be easily generalized to primes other than 3, but the conclusion of Theorem 1.2 does not carry over to these primes.

The class of *SR*-groups contains several interesting subclasses, e.g., let *X* be a finite group, P_1 a subgroup of Aut(*X*) such that $|P_1| = |C_X(P_1)| = 3$. Then the semidirect product $G = P_1X$ is a *SR*-group. If X = PSL(3, q), where *q* is congruent to 1 mod 3 but not mod 9, let α be the automorphism of *X* induced by the matrix $\begin{pmatrix} 0 & \lambda & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, where λ is a primitive cube root of unity in the field with *q* elements. If P_1 is the cyclic group generated by α , the semidirect product $G = P_1X$ is a *SR*-group.

Received November 5, 1968.

^{*} This research was partially supported by NSF Grants GP-5434 and GP-8496.