OZEKI'S INEQUALITY AND NONCOMMUTATIVE COVARIANCE

SAICHI IZUMINO * AND YUKI SEO **

Abstract

J.I.Fujii introduced the covariance of operators in Umegaki's theory of noncommutative probability. Very recently, it is observed that the so-called (noncommutative) covariance-variance inequality gives a unified method to prove certain operator inequalities including the celebrated Kantorovich inequality. Following after them, we shall discuss an operator version of Ozeki's inequality and consequently we show that the inequality needs a minor correction.

1. Introduction. From Umegaki's viewpoint [4] of noncommutative probability, M.Fujii, T.Furuta, R.Nakamoto and S.E.Takahashi [1] discussed the covariance and the variance of operators acting on a Hilbert space H. The covariance of two operators A and B (at a state $x \in H$) is defined by

$$
\begin{equation*}
\operatorname{Cov}(A, B)=\left(B^{*} A x, x\right)-(A x, x)\left(B^{*} x, x\right) \tag{1}
\end{equation*}
$$

and the variance of A is defined by

$$
\begin{equation*}
\operatorname{Var}(A)=\|A x\|^{2}-|(A x, x)|^{2} \tag{2}
\end{equation*}
$$

Their fundamental tool is the following covariance-variance inequality;

$$
\begin{equation*}
|\operatorname{Cov}(A, B)|^{2} \leq \operatorname{Var}(A) \operatorname{Var}(B) \tag{3}
\end{equation*}
$$

They observed that $\operatorname{Var}(A) \leq \frac{1}{4}(M-m)^{2}$ if A is a selfadjoint operator with $m \leq A \leq M$, and consequently they gave an estimation of the covariance by using (3): If $0 \leq m_{1} \leq$ $A \leq M_{1}$ and $0 \leq m_{2} \leq B \leq M_{2}$, then

$$
\begin{equation*}
|\operatorname{Cov}(A, B)| \leq \frac{1}{4}\left(M_{1}-m_{1}\right)\left(M_{2}-m_{2}\right) \tag{4}
\end{equation*}
$$

by which they unified proofs of many operator inequalities including the celebrated Kantorovich inequality.

Ozeki's inequality in [2] is the Kantorovich like inequality: Let a_{i} and b_{i} be two positive n-tuples, with $0<m_{1} \leq a_{i} \leq M_{1}$ and $0<m_{2} \leq b_{i} \leq M_{2} \quad(i=1, \cdots, n)$ for some constants m_{1}, m_{2}, M_{1}, and M_{2}. Then the following inequality holds

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leq \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{5}
\end{equation*}
$$

1991 Mathematics Subject Classification. 47A30 and 47A63.
Key words and phrases. Ozeki's inequality, covariance of operators, variance of operators.

