Strong Convergence Theorems for Nonexpansive Nonself-mappings in Banach Spaces

Gang-Eun Kim and Wataru Takahashi

Key words and Phrases: Nonexpansive mapping, sunny retraction, fixed point, weak inwardness condition, strong convergence theorem.

1 Introduction

Let *E* be a Banach space and let *C* be a nonempty closed convex subset of *E*. A mapping *T* from *C* into *E* is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. For a given $u \in C$ and each $t \in (0, 1)$, we define a contraction $T_t : C \to E$ by

$$T_t x = tTx + (1-t)u \qquad \text{for all } x \in C.$$
(1)

If $T(C) \subset C$, then $T_t(C) \subset C$. Thus, by Banach's contraction principle, there exists a unique fixed point x_t of T_t in C, that is, we have

$$x_t = tTx_t + (1-t)u. (2)$$

A question naturally arises to whether $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T. This question has been investigated by several authors; see, for example, Browder[1], Halpern[4], Singh and Watson[8], Marino and Trombetta[6], and others. Recently, Xu and Yin[10] proved that if C is a nonempty closed convex subset of a Hilbert space H, if $T: C \to H$ is a nonexpansive nonself-mapping, and if $\{x_t\}$ is the sequence defined by (2) which is bounded, then $\{x_t\}$ converges strongly as $t \to 1$ to a fixed point of T. Next, consider a sunny nonexpansive retraction P from E onto C. Then, following Marino and Trombetta[6], for a given $u \in C$ and each $t \in (0, 1)$, we define contractions S_t and U_t from