ON SOME CR SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR FIELD IN A COMPLEX SPACE FORM

U-Hang Ki*, Ryoichi Takagi** and Tsunero Takahashi

Abstract

We study $C R$ submanifolds with nonvanishing parallel mean curvature vector field immersed in a complex space form.

Introduction One of typical submanifolds of a Kaehlerian manifold is the so-called $C R$ submanifolds which are defined as follows: Let M be a submanifold of a Kaehlerian manifold \tilde{M} with almost complex structure J. If there is a differentiable distribution such that it is invariant and the complementary orthogonal distribution is totally real (cf. [1], [2]). Especially, if each normal space of M is mapped into the tangent space under the action of J, M is called a generic submanifold of \tilde{M}. Real hypersurface of a Riemannian manifold are the most typical example of the generic submanifold ([13]).

Many subjects for $C R$ submanifold were investigated from various different points of view. In [1, 2, 3, 4, 11] Bejancu, Chen, Kon and Yano studied basic properties of $C R$ submanifolds M in a Kaehlerian manifold. In particular, under the assumptions that the second fundamental forms are commutative with the f-structure induced in the tangent bundle, some characterizations and some classifications of $C R$ submanifolds with parallel mean curvature vector field in a complex space form were obtained ($\sec [7,8,9,10]$).

The purpose of the present paper is to study $C R$ submanifolds of a complex space form with nonvanishing parallel mean curvature vector field under the assumption that the shape operator in the direction of the mean curvature vector field is commutative with the f-structure induced in the tangent bundle.

1. Preliminaries

Let \tilde{M} be a Kaehlerian manifold of real dimension $2 m$ equipped with an almost complex structure J and a Hermitian metric tensor G. Then for any vector fields X and Y on \tilde{M}, we have

$$
J^{2} X=-X, \quad G(J X, J Y)=G(X, Y), \quad \tilde{\nabla} J=0
$$

[^0]
[^0]: * Supported by TGRC-KOSEF and BSRI-95-1404.
 ** Partially supported by JSPS-KOSEF

