ON *p*-HYPONORMAL OPERATORS

Muneo Chō and Hirohiko Jin

Abstract

In this paper, we will give some spectral properties of p-hyponormal operators and two operators T and S on a complex Hilbert space as follows :

(1) T is a *p*-hyponormal operator which is not quasi-hyponormal.

(2) S is a quasi-hyponormal operator which is not p-hyponormal.

1. Introduction. Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . An operator $T \in B(\mathcal{H})$ is said to be hyponormal if $T^*T \geq TT^*$. An operator $T \in B(\mathcal{H})$ is said to be p-hyponormal if $(T^*T)^p \geq (TT^*)^p$. Especially, when $p = \frac{1}{2}$, T is called semi-hyponormal. Throughout this paper, let 0 .It is well known that a <math>p-hyponormal operator is q-hyponormal for $q \leq p$ by Löwner's Theorem. An operator $T \in B(\mathcal{H})$ is said to be quasi-hyponormal if $T^{*2}T^2 \geq (T^*T)^2$. An operator $T \in B(\mathcal{H})$ is said to be paranormal if $||T^2x|| \geq ||Tx||^2$ for all unit vectors $x \in \mathcal{H}$. For an operator T, we denote the spectrum and the approximate point spectrum by $\sigma(T)$ and $\sigma_a(T)$, respectively. A point $z \in \mathbb{C}$ in the joint approximate point spectrum $\sigma_{ja}(T)$ if there exists a sequence of unit vectors $\{x_n\}$ in \mathcal{H} such that $(T-z)x_n \to 0$ and $(T-z)^*x_n \to 0$. For an operator $T \in B(\mathcal{H})$, we denote the polar decomposition of T by T = U|T|.

We need the following results.

THEOREM A (Th.4 of [6]). Let T be p-hyponormal. If $Tx = \lambda x$, then $T^*x = \overline{\lambda}x$.

THEOREM B (Th.8 of [6]). Let T be p-hyponormal. Then

$$\sigma_a(T) = \sigma_{ja}(T).$$

Next, let \mathcal{T} be the set of all strictly monotone increasing continuous non-negative functions on $\mathbf{R}^+ = [0, \infty)$. Let $\mathcal{T}_o = \{\varphi \in \mathcal{T} : \varphi(0) = 0\}$. For $\varphi \in \mathcal{T}_o$, the mapping $\tilde{\varphi}$ is defined by

$$\tilde{\varphi}(re^{i\theta}) = e^{i\theta}\varphi(r) \text{ and } \tilde{\varphi}(T) = U\varphi(|T|).$$

(1991) Mathematics Subject Classification. 47B20.

Key words and phrases. Hilbert space, p-hyponormal operator, quasi-hyponormal operator.