ADJOINT FAMILIES IN TOPOLOGICAL VECTOR SPACES

SADOON I. OTHMAN

Department of Mathematics, College of Science King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

ABSTRACT. Given a linear partial differential operator L of order m with c^m -coefficients and a distribution T on an open set Ω of \mathbb{R}^n , a necessary and sufficient condition is derived for the existence of a function $f \in L^p(\Omega)$, 1 , such that <math>Lf = T in the sense of distribution.

1. Introduction

Suppose B is a reflexive Banach space, E a locally convex space and $T: B \to E$ a linear map (continuous or not). We obtain a necessary and sufficient condition so that given $g \in E$, there exists $f \in B$ such that Tf = g.

This result is applied to the problem of finding a solution of $f \in L^p(\Omega)$, $1 and <math>\Omega$ open in \mathbb{R}^n , for the differential equation Lf = T where L is a partial differential operator of order m with c^m -coefficients and T is a distribution defined on Ω .

2. A Preliminary result in a Hilbert space

Proposition 1. Let T be a bounded linear operator on a Hilbert space H. Then given $g \in H$, there exists an $f \in H$ such that Tf = g if and only if $\sup_{\|u\|=1} \frac{|(g,u)|}{\|T^*u\|}$ is finite.

AMS Subject Classification: Primary 47F05, Secondary 47N20 Keywords and phrases: Locally convex spaces, Distributions.