Nihonkai Math. J.
Vol. 6 (1995), 129-134

PARAMETERIZED KANTOROVICH INEQUALITY FOR POSITIVE OPERATORS

Masatoshi Fujif * Eizaburo Kamei ** and Akemi Matsumoto ***

Abstract. The Kantorovich inequality says that if A is a positive operator on \boldsymbol{H} such that $0<m \leq A \leq M$ for some $M \geq m>0$, then

$$
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}
$$

for all unit vectors $x \in H$. We generalize it by the use of a family of power means, which gives us a parameterization of the Kantorovich inequality. Moreover we give a parameteriation of the Pólya-Szegö inequality.

1. Introduction. Let a, g and h be the arithmetic, geometric and harmonic mean respectively. It is known that these means are unified by the family of power means $\left\{m_{r} ;-1 \leq r \leq 1\right\}$, i.e.,

$$
\begin{equation*}
\alpha m_{r} \beta=\left(\frac{\alpha^{r}+\beta^{r}}{2}\right)^{\frac{1}{r}} \quad \text { for } \alpha, \beta>0 . \tag{1}
\end{equation*}
$$

It is easily seen that $m_{1}=a, m_{0}=g$ and $m_{-1}=h$. The family of power means plays an interesting role, e.g., $[1,3,5,7]$. We refer to [6] for the theory of operator means.

Now Kantorovich established the following inequality in his study on applications of functional analysis to numerical analysis, cf. [2] : If $\left\{a_{k}\right\}$ is a sequence in \mathbb{R} such that $0<m \leq a_{k} \leq M$ for some m and M, then

$$
\sum_{k} a_{k} x_{k}^{2} \sum_{k} \frac{1}{a_{k}} x_{k}^{2} \leq \frac{(M+m)^{2}}{4 M m}\left(\sum_{k} x_{k}^{2}\right)^{2}
$$

holds for all $x=\left\{x_{k}\right\}$ in $l^{2}(\mathbb{N})$.
If we define the diagonal operator A by $A=\operatorname{diag}\left(a_{k}\right)$, then we have

$$
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}\|x\|^{4} \quad \text { for } x \in l^{2}(\mathbb{N})
$$

if $0<m \leq A \leq M$. As a matter of fact, the following inequality is proved by Greub and Rheinboldt [2], which we call the Kantorovich inequality.

[^0]
[^0]: 1991 Mathematics Subject Classification. 47A63 and 47B15.

