ON REAL HYPERSURFACES IN QUATERNIONIC PROJECTIVE SPACE WITH \mathcal{D}^{\perp} -PARALLEL SECOND FUNDAMENTAL FORM

JUAN DE DIOS PÉREZ AND YOUNG JIN SUH*

ABSTRACT. In this paper we give a complete classification of real hypersurfaces in a quaternionic projective space QP^m satisfying certain conditions on the orthogonal distribution \mathcal{D} .

§1. Introduction

Throughout this paper let us denote by M a connected real hypersurface in a quaternionic projective space $QP^m, m \ge 3$, endowed with the metric g of constant quaternionic sectional curvature 4. Let N be a unit local normal vector field on M and $U_i = -J_iN$, i = 1, 2, 3, where $\{J_i\}_{i=1,2,3}$ is a local basis of the quaternionic structure of QP^m , [3]. Several examples of such real hypersurfaces are well known, see for instance ([1],[5],[6],[7]).

Now, let us consider the following conditions that the second fundamental tensor A of M in QP^m may satisfy

(1.1)
$$(\nabla_X A)Y = -\Sigma_{i=1}^3 \{ f_i(Y)\phi_i X + g(\phi_i X, Y)U_i \},$$

(1.2)
$$g((A\phi_i - \phi_i A)X, Y) = 0,$$

for any i = 1, 2, 3, and any tangent vector fields X and Y of M, where the connection of M induced from the connection of QP^m is denoted by ∇ .

Pak [7] investigated the above conditions and showed that they are equivalent to each other. Moreover he used the condition (1.1) to find a lower bound of $\|\nabla A\|$ for real hypersurfaces in QP^m . In fact, it was shown that $\|\nabla A\|^2 \ge 24(m-1)$ for such hypersurfaces and the equality holds if and only if the condition (1.1) holds. In this case it was also known that M is locally congruent to a real hypersurface of type A_1 or A_2 , which means a tube of radius r over QP^k $(1 \le k \le m-1)$ in the notion of Berndt [1], and Martinez and the first author [5].

Now let us define a distribution \mathcal{D} by $\mathcal{D}(x) = \{X \in T_x M : X \perp U_i(x), i = 1, 2, 3\}$, $x \in M$, of a real hypersurface M in QP^m , which is orthogonal to the structure vector fields $\{U_1, U_2, U_3\}$ and invariant with respect to structure tensors $\{\phi_1, \phi_2, \phi_3\}$, and by $\mathcal{D}^{\perp} = Span\{U_1, U_2, U_3\}$ its orthogonal complement in TM.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

^{*} The second author was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1995 and partly by TGRC-KOSEF.