ON REAL HYPERSURFACES IN QUATERNIONIC PROJECTIVE SPACE WITH
 \mathcal{D}^{\perp}-PARALLEL SECOND FUNDAMENTAL FORM

Juan De Dios Pérez and Young Jin Suh*

Abstract

In this paper we give a complete classification of real hypersurfaces in a quaternionic projective space $Q P^{m}$ satisfying certain conditions on the orthogonal distribution \mathcal{D}.

§1. Introduction

Throughout this paper let us denote by M a connected real hypersurface in a quaternionic projective space $Q P^{m}, m \geq 3$, endowed with the metric g of constant quaternionic sectional curvature 4. Let N be a unit local normal vector field on M and $U_{i}=-J_{i} N, i=1,2,3$, where $\left\{J_{i}\right\}_{i=1,2,3}$ is a local basis of the quaternionic structure of $Q P^{\boldsymbol{m}},[3]$. Several examples of such real hypersurfaces are well known, see for instance ([1],[5],[6],[7]).

Now, let us consider the following conditions that the second fundamental tensor A of M in $Q P^{m}$ may satisfy

$$
\begin{gather*}
\left(\nabla_{X} A\right) Y=-\Sigma_{i=1}^{3}\left\{f_{i}(Y) \phi_{i} X+g\left(\phi_{i} X, Y\right) U_{i}\right\} \tag{1.1}\\
g\left(\left(A \phi_{i}-\phi_{i} A\right) X, Y\right)=0 \tag{1.2}
\end{gather*}
$$

for any $i=1,2,3$, and any tangent vector fields X and Y of M, where the connection of M induced from the connection of $Q P^{m}$ is denoted by ∇.

Pak [7] investigated the above conditions and showed that they are equivalent to each other. Moreover he used the condition (1.1) to find a lower bound of $\|\nabla A\|$ for real hypersurfaces in $Q P^{m}$. In fact, it was shown that $\|\nabla A\|^{2} \geq 24(m-1)$ for such hypersurfaces and the equality holds if and only if the condition (1.1) holds. In this case it was also known that M is locally congruent to a real hypersurface of type A_{1} or A_{2}, which means a tube of radius r over $Q P^{k}(1 \leq k \leq m-1)$ in the notion of Berndt [1], and Martinez and the first author [5].

Now let us define a distribution \mathcal{D} by $\mathcal{D}(x)=\left\{X \in T_{x} M: X \perp U_{i}(x), i=1,2,3\right\}$,$x \in M$, of a real hypersurface M in $Q P^{m}$, which is orthogonal to the structure vector fields $\left\{U_{1}, U_{2}, U_{3}\right\}$ and invariant with respect to structure tensors $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$, and by $\mathcal{D}^{\perp}=S \operatorname{pan}\left\{U_{1}, U_{2}, U_{3}\right\}$ its orthogonal complement in $T M$.

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

 * The second author was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1995 and partly by TGRC-KOSEF.

