All solutions of the Diophantine equation $2^{a}X^{r} + 2^{b}Y^{s} = 2^{c}Z^{t}$ where r, s and t are 2 or 4

Yasutaka Suzuki

1. Introduction

We shall determine all solutions of the equation $2^{a}X^{r}+2^{b}Y^{s} = 2^{c}Z^{t}$ in nonzero integers X, Y, Z, where a, b, c are non-negative integers, and r, s, t are 2 or 4, and X, Y, Z are pairwise relatively prime. To discuss the solutions of this equation, we may assume that X, Y, Z are all positive odd integers. We shall show that the following results.

The equations

X^2	+	Y^2	=	$2Z^2$,
X^2	+	$2^m Y^2$	=	Z^2	,
X^2	+	Y^2	=	$2Z^4$,
X^2	+	$2^{m}Y^{2}$	=	Z^4	,
X^2	+	Y^4	=	$2Z^2$,
X^4	+	$2^{m}Y^{2}$	=	Z^2	

 \mathbf{and}

 $X^2 + 2^m Y^4 = Z^2$

have independently infinite solutions.

The equation

 $2^{a}X^{4} + 2^{b}Y^{4} = 2^{c}Z^{4}$

has only one trivial solution.

The equation

 $X^4 + Y^4 = 2Z^2$

has only one trivial solution. (A.M.Legendre) The equation

1991 Mathematics Subject Classification. Primary 11D41; Secondary 11D09.