All solutions of the Diophantine equation

 $2^{a} X^{r}+2^{b} Y^{s}=2^{c} Z^{t}$ where r, s and t are 2 or 4Yasutaka Suzuki

1. Introduction

We shall determine all solutions of the equation $2^{a} X^{r}+2^{b} Y^{s}=2^{c} Z^{t}$ in nonzero integers X, Y, Z, where a, b, c are non-negative integers, and r, s, t are 2 or 4 , and X, Y, Z are pairwise relatively prime. To discuss the solutions of this equation, we may assume that X, Y, Z are all positive odd integers. We shall show that the following results.

The equations

$$
\begin{aligned}
& X^{2}+Y^{2}=2 Z^{2} \\
& X^{2}+2^{m} Y^{2}=Z^{2} \\
& X^{2}+ \\
& X^{2}+2^{m} Y^{2}=2 Z^{4} \\
& X^{2}+ \\
& Y^{4}+Z^{4} Y^{2}=2 Z^{2}
\end{aligned}
$$

and

$$
X^{2}+2^{m} Y^{4}=Z^{2}
$$

have independently infinite solutions.
The equation

$$
2^{a} X^{4}+2^{b} Y^{4}=2^{c} Z^{4}
$$

has only one trivial solution.
The equation

$$
X^{4}+Y^{4}=2 Z^{2}
$$

has only one trivial solution. (A.M.Legendre)
The equation

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 11D41; Secondary 11D09.

