ON BAZILEVIC FUNCTIONS OF COMPLEX ORDER

KHALIDA INAYAT NOOR

ABSTRACT

Let $\alpha>0$ and $b \neq 0$ a complex number. Then a function $f \epsilon B(\alpha, b)$ if it is analytic in the unit disc E and $\operatorname{Re}\left\{1+\frac{1}{b}\left[\frac{z f^{\prime}(z) f^{a-1}(z)}{g^{a}(z)}-1\right]\right\}>0$, for some starlike function $g, z \epsilon E$. The class $B_{1}(\alpha, b)$ is defined by taking $g(z)=z$ in the same way. We call these functions as Bazilevic functions of complex order b and type α. Arc length coefficient and some other results are solved for these classes.

1. INTRODUCTION

Let S denote the class of all analytic functions f which are univalent in the unit disc $E=\{z:|z|<1\}$ and normalized by the conditions $f(0)=0, f^{\prime}(0)=1$. Let K and S^{*} be the usual subclasses of S consisting of functions which are, respectively, close-to-convex and starlike (w.r. to the origin) in E. Let P denote the class of functions p which are analytic in E and satisfy the conditions $p(0)=1$ and $\operatorname{Re} p(z)>0$ in E.

We define the following.

Definition 1.1

Let $\alpha>0$ and $b \neq 0$ (complex). Let f be analytic in E and be given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Then we say that
(i) $f \in B(\alpha, b)$ if

$$
\left\{1+\frac{1}{b}\left[\frac{z f^{\prime}(z) f^{\alpha-1}(z)}{g^{\alpha}(z)}-1\right]\right\} \epsilon P
$$

for some $g \epsilon S^{*}, z \epsilon E$,
and

