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\S 1. Introduction

Let $(M,g)$ be an m-dimensional compact orientable Riemannian mani-
fold (connected and $C^{\infty}$ ) with metric tensor $g$ . We denote by $\Delta$ the Laplacian
acting on pforms on $M,$ $0\leq p\leq m$ . Then we have the spectrum for each
$p$ :

Spec $(M, g):=\{0\leq\lambda_{0,p}\leq\lambda_{1,p}\leq\lambda_{2,p}\leq\cdots\uparrow+\infty\}$ ,

where each eigenvalue $\lambda_{\alpha,p}$ is repeated as many times as its multiplicity indi-
cates. In order to study the relation between Spec $(M, g)$ and the geometry
of $(M, g)$ we use the Minakshisundaram - Pleijel - Gaffney’s formula. Z.
Olszak ([10]), H.K. Pak ([11]), J.S. Pak, J.C. Jeong and W-T. Kim ([12]),
S. Yamaguchi and G. Chuman ([18]) and others studied the spectrum of the
Laplacian and the curvature of Sasakian manifolds.

The purpose of the present $pape\iota$ is to study cosymplectic analogues for
certain results of [1], [10], [12], [13], [14], [15] and [18].

We shall be in $ c\infty$ -category. The indices $h,$ $i,j,$ $k,$ $s,$ $t,$ $\cdots$ run over the
range $\{1, 2, \cdots , 2n+1\}$ . The Einstein summation convention with respect
to those system of indices will be used.
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\S 2. Preliminaries

By $R=(R_{kji^{h}}),R_{1}=(R_{ji})$ and $r$ we denote the Riemannian curvature
tensor, the Ricci curvature tensor and the scalar curvature, respectively.
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