# A Note on Actions of Compact Matrix Quantum Groups on von Neumann Algebras 

Yuji Konishi


#### Abstract

In this paper we consider the object $\widehat{S_{\mu} U(2)}$ coming from $S_{\mu} U(2)$ defined by S. L. Woronowicz, and construct an action of $\widetilde{S_{\mu} U(2)}$ on the Powers factor $R_{\lambda}$ if $\lambda=\mu^{2}$. Moreover we show that the fixed point algebra under the action is the AFD $I I_{1}$-factor which is generated by Jones projections.


## 1. Introduction

In [8] Woronowicz introduced a concept of a compact matrix quantum group (a compact matrix pseudogroup) which is a certain deformation of the dual object of compact groups. Let $G=(A, u)$ be a compact matrix quantum group and $\Phi: A \longrightarrow A \otimes_{\min } A$ be a ${ }^{*}$ homomorphism called a comultiplication where $A$ is a unital $C^{*}$-algebra as in [8]. The comultiplication $\Phi$ is an action of $G$ on itself.

In [3] the author, Nagisa and Watatani constructed an action of $G$ on the Cuntz algebra $\mathcal{O}_{n}$ or the UHF-algebra $M_{n}^{\infty}$ of type $n^{\infty}$. The forms of the actions $\psi$ and $\psi^{\prime}$ were represented as follows:

$$
\psi: \mathcal{O}_{n} \longrightarrow \mathcal{O}_{n} \otimes_{\min } A, \quad \psi^{\prime}: M_{n}^{\infty} \longrightarrow M_{n}^{\infty} \otimes_{\min } A .
$$

Especially in [3] they considered the actions of $S_{\mu} U(2)$ (Woronowicz, [9]) on $\mathcal{O}_{2}$ and $M_{2}^{\infty}$, and showed the fixed point algebras under the actions were generated by Jones projections. This means a $C^{*}$-algebra version of a deformation of the result of the case for the action of $S U(2)$ by Jones in [1] and [2].

In this paper we construct an action of $\widetilde{S_{\mu} U(2)}$ coming from $S_{\mu} U(2)$ on the Powers factor $R_{\lambda}$ if $\lambda=\mu^{2}$ using the Kac-Takesaki operator introduced by Nakagami and Takesaki in [4] and [6]. Moreover we show that the fixed point algebra under the action is the AFD $I I_{1}$-factor which is generated by the Jones projections $\left\{e_{n}\right\}_{n=1}^{\infty}$ such that

$$
e_{i} e_{i \pm 1} e_{i}=\left(\lambda+\lambda^{-1}+2\right)^{-1} e_{i}
$$

[^0]
[^0]:    1991 Mathematics Subject Classification. 46L10, 46L60.
    Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-21, Japan.

