A Note on Actions of Compact Matrix Quantum Groups on von Neumann Algebras

Yuji Konishi

Abstract. In this paper we consider the object $S_{\mu}U(2)$ coming from $S_{\mu}U(2)$ defined by S. L. Woronowicz, and construct an action of $\widetilde{S_{\mu}U(2)}$ on the Powers factor R_{λ} if $\lambda = \mu^2$. Moreover we show that the fixed point algebra under the action is the AFD II_1 -factor which is generated by Jones projections.

1. Introduction

In [8] Woronowicz introduced a concept of a compact matrix quantum group (a compact matrix pseudogroup) which is a certain deformation of the dual object of compact groups. Let G = (A, u) be a compact matrix quantum group and $\Phi : A \longrightarrow A \otimes_{min} A$ be a *-homomorphism called a comultiplication where A is a unital C*-algebra as in [8]. The comultiplication Φ is an action of G on itself.

In [3] the author, Nagisa and Watatani constructed an action of G on the Cuntz algebra \mathcal{O}_n or the UHF-algebra M_n^{∞} of type n^{∞} . The forms of the actions ψ and ψ' were represented as follows:

$$\psi: \mathcal{O}_n \longrightarrow \mathcal{O}_n \otimes_{\min} A, \qquad \psi': M_n^{\infty} \longrightarrow M_n^{\infty} \otimes_{\min} A.$$

Especially in [3] they considered the actions of $S_{\mu}U(2)$ (Woronowicz, [9]) on \mathcal{O}_2 and M_2^{∞} , and showed the fixed point algebras under the actions were generated by Jones projections. This means a C^* -algebra version of a deformation of the result of the case for the action of SU(2) by Jones in [1] and [2].

In this paper we construct an action of $\widetilde{S_{\mu}U(2)}$ coming from $S_{\mu}U(2)$ on the Powers factor R_{λ} if $\lambda = \mu^2$ using the Kac-Takesaki operator introduced by Nakagami and Takesaki in [4] and [6]. Moreover we show that the fixed point algebra under the action is the AFD II_1 -factor which is generated by the Jones projections $\{e_n\}_{n=1}^{\infty}$ such that

$$e_i e_{i\pm 1} e_i = (\lambda + \lambda^{-1} + 2)^{-1} e_i,$$

¹⁹⁹¹ Mathematics Subject Classification. 46L10, 46L60.

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-21, Japan.