Nihonkai Math. J. Vol.2(1991),1-24

Maximal Subgroups of the Sporadic Simple Group of Rudvalis

Satoshi Yoshiara Department of Information Science Hirosaki University Hirosaki, Aomori 036, Japan

Abstract

The maximal subgroups of the Rudvalis sporadic simple group are completely classified up to conjugacy.

1 Introduction.

The Rudvalis group Rud is one of the six sporadic finite simple groups which are not involved in the Fischer-Griess Monster. The aim of this paper is to classify the maximal subgroups of Rud, where we use ATLAS notation to denote the isomorphism types of groups [2].

Theorem 1.1 The Rudvalis simple group of order $2^{14} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13 \cdot 29$ has exactly 15 conjugacy classes of maximal subgroups. The isomorphism types of the representatives are as follows:

(A)	Four 2-local subgroups:		(B)	One 3-local and three 5-local subgroups:
	(1)	$2 \cdot 2^{4+6}: S_5,$	(5)	$(3 \cdot A_6) \cdot 2^2$,
	(2)	$2^{3+8}: L_2(7),$	(6)	$(5^{1+2}_+;Q_8)\cdot 4,$
	(3)	$2^{6} \cdot G_{2}(2)$ (non-split),	(7)	$5^2:GL_2(5),$
	(4)	$(2^2 \times Sz(8)):3.$	(8)	$(5:4)\times A_5.$
(•	

(C)	Seven non-local subgroups:				
	(9)	${}^{2}F_{4}(2),$	(13)	$L_{2}(29),$	
	(10)	$U_{3}(5).2,$	(14)	$PGL_{2}(13),$	
	(11)	A_8 ,	(15)	$A_6 \cdot 2^2$.	
	(12)	$L_2(25): 2^2$,			

It should be mentioned that the same result has also obtained by R. Wilson [10] by fully using computer for calculating matrices of degree 28. The original version of the present paper was written in 1984, completely independent from Wilson's work (see p. 248 in [2]). Since the methods I used in that paper are not so dramatically different from those used by Wilson, I did not submit the paper. However, I have been asked by several people where my paper appeared and some of them kindly encouraged me to publish it. Thus I decided to publish it, in order to make it easy to access and to stress a difference between my method and Wilson's: that is, in the present paper, the classification has done without using computer. In particular, the existence

- 1 -