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Abstract

The maximal subgroups of the Rudvalis sporadic simple group are completely classified
up to conjugacy.

1 Introduction.
The Rudvalis group Rud is one of the six sporadic finite simple groups which are not involved in
the Fischer-Griess Monster. The aim of this paper is to classify the maximal subgroups of $Rud$,
where we use ATLAS notation to denote the isomorphism types of groups [2].

Theorem 1.1 The Rudvalis simple group of order $2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7\cdot 13\cdot 29$ has exactly 15 conjugacy
classes of maximal subgroups. The isomorphism types of the representatives are as follows:

$(A)$ Four 2-local subgroups: $(B)$

(1) 2 $\cdot$
$2^{4+6}$ : $S_{5}$ , (5)

(2) $2^{3+8}$ : $L_{2}(7)$ , (6)
(3) $2^{6}\cdot G_{2}(2)$ (non-split), (7)
(4) $(2^{2}xSz(8)):3$ . (8)

One 3-local and three 5-local subgroups:
$(3 \cdot A_{6})\cdot 2^{2}$ ,

$(5_{+}^{1+2} : Q_{8})\cdot 4$ ,
$5^{2}$ : $GL_{2}(5)$ ,
(5: 4) $xA_{5}$ .

$(C)$ Seven non-local subgroups:
(9) $2F_{4}(2)$ , (13) $L_{2}(29)$ ,

(10) $U_{3}(5).2$ , (14) $PGL_{2}(13)$ ,
(11) $A_{8}$ , (15) $A_{6}\cdot 2^{2}$ .
(12) $L_{2}(25):2^{2}$ ,

It should be mentioned that the same result has also obtained by R. Wilson [10] by fully
using computer for calculating matrices of degree 28. The original version of the present paper
was written in 1984, completely independent from Wilson’s work (see p. 248 in [2]). Since the
methods I used in that paper are not so dramatically different from those used by Wilson, I did
not submit the paper. However, I have been asked by several people where my paper appeared
and some of them kindly encouraged me to publish it. Thus I decided to publish it, in order to
make it easy to access and to stress a difference between my method and Wilson’s: that is, in the
present paper, the classification has done without using computer. In particular, the existence
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