On p-quasihyponormal operators

Atsushi Uchiyama *

Abstract

For a p-quasihyponormal operator T with the polar decomposition T = U|T|, we show that $T_p = U|T|^p$ is quasihyponormal with spectrum $\sigma(T_p) = \{r^p e^{i\theta} : e^{i\theta} \in \sigma(T)\}$. From this, we obtain the following Putnam type inequality for a p-quasihyponormal operator T

$$|||T|^{2p} - |T^*|^{2p}|| \le 2||T||^p (\frac{p}{\pi} \iint_{re^{i\theta} \in \sigma(T)} r^{2p-1} dr d\theta)^{\frac{1}{2}}.$$

These results are parallel with Xia, Aluthge and Chō-Itoh's results for *p*-hyponormal operators. Also we show that the Riesz idempotent E for T with respect to an isolated point λ of the spectrum $\sigma(T)$ satisfies $\operatorname{ran} E = \ker(T - \lambda)$, moreover, if $\lambda \neq 0$ then E is self-adjoint and $\ker(T - \lambda) = \ker(T - \lambda)^*$.

1. Introductions

Studying *p*-hyponormal operators, i.e., operators T on a (separable) complex Hilbert space \mathcal{H} such that $(T^*T)^p \geq (TT^*)^p$, for 0 was first started by D. Xia [20], inthat paper, he gave an example of semi-hyponormal operator but not hyponormal. Herewe say that an operator <math>T is hyponormal iff T is 1-hyponormal, semi-hyponormal iff T

*Research Fellow of the Japan Society for Promotion of Science.

²⁰⁰⁰ Mathematics Subject Classification. 47A10, 47B20.

Key words and phrases. Riesz idempotent, p-quasihyponormal operator.