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WANDERING VECTORS OF FINITE SUBDIAGONAL ALGEBRAS

GUOXING JI, LINA ZHOU AND ZE LI

ABSTRACT. In this note we consider wandering vectors and their multipliers for fi-
nite subdiagonal algebras. We prove that the set of completely wandering vectors of
a finite subdiagonal algebra is connected and is closed if and only if the finite subdi-
agonal algebra is antisymmetric. We also prove that the set of all wandering vector
multipliers for an antisymmetric finite subdiagonal algebra forms a group.

1. INTRODUCTION

The notion of wandering vectors was introduced in [1] by Arveson to study fac-
torization in finite subdiagonal algebras. This notion is very useful in the study of
analytic operator algebras (cf. [1, 3, 6, 10, 11, 12] and so on). On the other hand,
wandering vectors and their multipliers for unitary systems are systemically studied
by several authors (cf. [2, 4, 5, 7]). It is noted that the structure of wandering vectors
of both subdiagonal algebras and unitary systems is very interesting. In this note we
consider wandering vectors of a finite subdiagonal algebra.

Arveson introduced the notion of subdiagonal algebras to study the analyticity in
operator algebras in [1]. Let $\mathcal{M}$ be a $\sigma- finite$ von Neumann algebra on $\mathcal{H}$ and $\mathfrak{D}$ a von
Neumann subalgebra of $\mathcal{M}$ . Let $\Phi$ be a faithful normal conditional expectation from
$\mathcal{M}$ onto $\mathfrak{D}$ . A subalgebra $\mathfrak{U}$ of $\mathcal{M}$ , containing $\mathfrak{D}$ , is called a subdiagonal algebra of $\mathcal{M}$

with respect to $\Phi$ if

(i) $\mathfrak{U}\cap \mathfrak{U}^{*}=\mathfrak{D}$ ,
(ii) $\Phi$ is multiplicative on $\mathfrak{U}$ , and
(iii) $\mathfrak{U}+\mathfrak{U}^{*}$ is $\sigma$-weakly dense in $\mathcal{M}$ .

The algebra $\mathfrak{D}$ is called the diagonal of $\mathfrak{U}$ . Although subdiagonal algebras are not
assumed to be $\sigma$-weakly closed in [1], the $\sigma$-weak closure of a subdiagonal algebra is
again a subdiagonal algebra of $\mathcal{M}$ with respect to $\Phi$ (Remark 2.1.2 in [1]). Thus we
assume that our subdiagonal algebras are always $\sigma$-weakly closed. We say that $\mathfrak{U}$ is a
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