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1. Introduction.

Let us consider the following Cauchy problem:

$\partial_{t}u(x, t)=\Delta u(x, t)+q(x)u(x, t)$ in $R^{n}\times(0, \infty)(n\geq 2)$ , (1.1)

$u(x, O)=f(x)$ on $R^{n}$ , (1.2)

where $q(x),$ $f(x)$ are bounded continuous functions and supp $q\subset\subset\{x$ : $|x|<$

$R\}(R>0)$ . Without loss of generality, we may assume $O\not\in suppq$ . Various inverse
problems are studied for determining $q(x)$ from the additional infomations (cf. [2],
[5]).

In this paper, we study the folowing inverse problem:
Determine $q(x)$ from the knowledge of $\{u(f)(R\omega, t) : \omega\in S^{n-1}\}$ (considred as the
set of observed data) and $\{f(x)\}$ (considered as the set of input data).

For the wave equation $u_{tt}=\Delta u+q(x)u$ , their high frequency beam solutions
had used to derive the uniqueness of $q(x)$ from the Neumann to Dirichlet map
(cf. [4], [7], [9]). The Neumann to Dirichlet map uniquely determines the X-ray
transformation of $q(x)$ . However the parabolic equations can not have the beam
type solutions. For the parabolic equation $u_{t}=\Delta u+q(x)u$ , Theorem 9.1.2 in [5]
shows that the maximum principle and the enery estimates for the parabolic one
derive the uniqueness of $q(x)$ from the Neumann to Dirichlet map. Therefore we need
another idea to obtain the X-ray transformation of $q(x)$ . In the case of parabolic
equations, by combining the Feynman-Kac formula and the n-dimensional Brownian
bridge process, we can represent their solutions directly and we shall see that we
can get the X-ray transformation of $q(x)$ . These considerations leads us to the proof
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