On Some EP Operators

Masuo Itoh

Abstract

Let H be Hilbert space, and let $T: H \rightarrow H$ be a bounded linear operator with closed range. In this paper, we introduce a new family of operators with generalized inverse T^{\dagger} such that $T^{\dagger} T \geq T T^{\dagger}$, which is weaker than the case of EP. Moreover we characterize such operators and give some fundamental properties.

1 Introduction and preliminaries

Throughout this paper we assume that H_{1}, H_{2}, and H are separable complex Hilbert spaces with inner product (\cdot, \cdot). Let $B\left(H_{1}, H_{2}\right)$ be the set of all bounded linear operators from H_{1} into H_{2}. Let $B_{C}\left(H_{1}, H_{2}\right)$ be the subspace of all $T \in B\left(H_{1}, H_{2}\right)$ such that the range of T is closed in H_{2}. If $H_{1}=H_{2}=H$, we write $B(H)=B(H, H)$ and $B_{C}(H)=B_{C}(H, H)$. For $T \in B\left(H_{1}, H_{2}\right)$, $\operatorname{ker} T$ and $R(T)$ denote the kernel and the range of T, respectively.

According to Nashed [6], $T \in B_{C}\left(H_{1}, H_{2}\right)$ has a Moore-Penrose inverse T^{\dagger}, that is, T^{\dagger} is the unique solution for the equations:

$$
\begin{equation*}
T T^{\dagger} T=T, T^{\dagger} T T^{\dagger}=T^{\dagger},\left(T T^{\dagger}\right)^{*}=T T^{\dagger}, \text { and }\left(T^{\dagger} T\right)^{*}=T^{\dagger} T \tag{1.1}
\end{equation*}
$$

where T^{*} denotes the adjoint operator of T. Later of this, we write M-P inverse for short.

We need the following results of T^{\dagger} and $R(T)$. See $[3,4,5]$ for details.
Theorem A. (i) For any $T \in B_{C}\left(H_{1}, H_{2}\right)$ with M-P inverse T^{\dagger}, we have that

$$
T^{\dagger} T=P_{R\left(T^{\dagger}\right)}, T T^{\dagger}=P_{R(T)},\left(T^{\dagger}\right)^{\dagger}=T, \text { and }\left(T^{\dagger}\right)^{*}=\left(T^{*}\right)^{\dagger},
$$

where P_{M} is the orthogonal projection from H onto M.
(ii) For any $T \in B(H)$,
(1) $R(T)$ is closed if and only if T^{\dagger} is bounded;
(2) $R(T)$ is closed if and only if $R\left(T^{*}\right)$ is closed.

An operator T in $B(H)$ is said to be an $E P$ operator if the range of T is equal to the range of its adjoint T^{*}, i.e., $R(T)=R\left(T^{*}\right)$. For $S, T \in B(H)$, we write

