On Some EP Operators

Masuo Itoh

Abstract

Let H be Hilbert space, and let $T: H \to H$ be a bounded linear operator with closed range. In this paper, we introduce a new family of operators with generalized inverse T^{\dagger} such that $T^{\dagger}T \geq TT^{\dagger}$, which is weaker than the case of EP. Moreover we characterize such operators and give some fundamental properties.

1 Introduction and preliminaries

Throughout this paper we assume that H_1 , H_2 , and H are separable complex Hilbert spaces with inner product (\cdot, \cdot) . Let $B(H_1, H_2)$ be the set of all bounded linear operators from H_1 into H_2 . Let $B_C(H_1, H_2)$ be the subspace of all $T \in B(H_1, H_2)$ such that the range of T is closed in H_2 . If $H_1 = H_2 = H$, we write B(H) = B(H, H) and $B_C(H) = B_C(H, H)$. For $T \in B(H_1, H_2)$, ker T and R(T) denote the kernel and the range of T, respectively.

According to Nashed [6], $T \in B_C(H_1, H_2)$ has a Moore-Penrose inverse T^{\dagger} , that is, T^{\dagger} is the unique solution for the equations:

$$TT^{\dagger}T = T, \ T^{\dagger}TT^{\dagger} = T^{\dagger}, \ (TT^{\dagger})^* = TT^{\dagger}, \ \text{and} \ (T^{\dagger}T)^* = T^{\dagger}T, \tag{1.1}$$

where T^* denotes the adjoint operator of T. Later of this, we write M-P inverse for short.

We need the following results of T^{\dagger} and R(T). See [3, 4, 5] for details.

Theorem A. (i) For any $T \in B_C(H_1, H_2)$ with M-P inverse T^{\dagger} , we have that

$$T^{\dagger}T = P_{R(T^{\dagger})}, \ TT^{\dagger} = P_{R(T)}, \ (T^{\dagger})^{\dagger} = T, \ \text{and} \ (T^{\dagger})^{*} = (T^{*})^{\dagger},$$

where P_M is the orthogonal projection from H onto M.

(ii) For any $T \in B(H)$,

(1) R(T) is closed if and only if T^{\dagger} is bounded;

(2) R(T) is closed if and only if $R(T^*)$ is closed.

An operator T in B(H) is said to be an *EP operator* if the range of T is equal to the range of its adjoint T^* , i.e., $R(T) = R(T^*)$. For $S, T \in B(H)$, we write

— 49 —