AN EXTENSION OF KANTOROVICH INEQUALITY

SAICHI IZUMINO * AND MASAHIRO NAKAMURA **
Dedicated to the memory of Professor Shizuo Kakutani

Abstract

A simple proof of the Kantorovich inequality is presented, and consequently an extension of the inequality is proposed which seems neat.

1. In this note an operator means a bounded linear operator acting on a Hilbert space. For a positive invertible operator A, the interval $I=[m, M]$ is the convex hull of the spectrum of A. Let f be a (real-valued) continuous function defined on I and μ a probability measure on I, then the expectation value is defined by $\mathrm{E}[f]=\int_{I} f(t) d \mu(t)$. For the convenience, by the spectral theorem, an operator A is identified with the function $t, f(A)$ with $f(t)$, and the scalars are identified with the scalar multiples of the identity operator.

In these circumstances, the celebrated Kantorovich inequality is written as follows:

$$
\begin{equation*}
(A x, x)\left(A^{-1} x, x\right) \leq \frac{(M+m)^{2}}{4 M m}, \text { for a unit vector } x \in H \tag{1}
\end{equation*}
$$

There are a lot of proofs of the inequality [10], [14], [16] - [18], etc. Among them, the proof in [14] presents the following equivalent inequality:

$$
\begin{equation*}
\mathrm{E}[t] \mathrm{E}[1 / t] \leq \frac{(M+m)^{2}}{4 M m} \tag{2}
\end{equation*}
$$

Let us cite the proof of (2) in [14]. Put

$$
l(t)=\frac{M+m-t}{M m}
$$

then $1 / t \leq l$, so that $\mathrm{E}[1 / t] \leq \mathrm{E}[l]$, and

$$
\mathrm{E}[t] \mathrm{E}[1 / t] \leq \mathrm{E}[t] \mathrm{E}[l]=\mathrm{E}[t] \cdot l(\mathrm{E}[t])=\frac{1}{M m}\left((M+m) \mathrm{E}[t]-\mathrm{E}[t]^{2}\right)
$$

Since the last term is a quadratic polynomial in $\mathrm{E}[t]$ and approaches its maximum at $\mathrm{E}[t]=(M+m) / 2$, the desired (2) is proved.

Observing the above proof, we see that the essential tools are linearity and monotonicity of the expectation.

There are a large number of authors who have presented extensions of the Kantorovich inequality [2] - [6], [8] - [12], [14] - [18], etc..

In this note we shall modify the above proof in [14] to show an extension of Kantorovich inequality.

2000 Mathematics Subject Classification. 47A30, 47A63.
Key words and phrases. Kantorovich inequality, Kantorovich constant, Specht ratio.

