POISSON SUMMATION FORMULA FOR THE SPACE OF FUNCTIONALS

TAKASHI NITTA AND TOMOKO OKADA

Abstract

In the preceding work, we formulated a Fourier transformation on the infinite-dimensional space of functionals. Here we first calculate the Fourier transformation of infinite-dimensional Gaussian distribution $\exp\left(-\pi\xi\int_{-\infty}^{\infty}\alpha^2(t)dt\right)$ for $\xi\in\mathbf{C}$ with $\mathrm{Re}(\xi)>0$, $\alpha\in L^2(\mathbf{R})$, using our formulated path integral. Secondly we develop the Poisson summation formula for the space of functionals, and define a functional Z_s , $s\in\mathbf{C}$, so that our path integral of the functional Z_s corresponds to Riemann's zeta function in the case that $\mathrm{Re}(s)>1$.

0. Introduction

In the preceding paper([N-O2]), we defined a delta functional δ and a Fourier transformation F on the space of functionals in the infinitesimal analysis as one of generalizations for Kinoshita's infinitesimal Fourier transformation in the space of functions. Historically, in 1962, Gaishi Takeuchi([T]) introduced a δ -function for the space of functions under nonstandard analysis. In 1988, 1990, Kinoshita([K1],[K2]) defined his Fourier transformation in the infinitesimal analysis for the space of functions. He called it "an infinitesimal Fourier transformation". Nitta and Okada([N-O1],[N-O2]) defined, for funtionals, an infinitesimal Fourier transformation, using a concept of double infinitesimals, and calculated the infinitesimal Fourier transform for two typical examples. The main idea is to use the concept of double infinitesimal Fourier transform of δ , δ^2 , ..., and $\sqrt{\delta}$, ... can be calculated as constant functionals, 1, infinite, ..., and infinitesimal, ...

Now let H be an even infinite number in * \mathbf{R} , and L be a lattice with infinitesimal spacing

 $L:=\left\{ arepsilon z\mid z\in {}^{*}\mathbf{Z},\, -rac{H}{2}\leq arepsilon z<rac{H}{2}
ight\} ,\,\, \text{where}\,\, arepsilon=rac{1}{H},\, \text{and let}\,\, H'\,\, \text{be an even infinite}$ number in ${}^{\star}({}^{*}\mathbf{R}),\,\, \text{and}\,\, L'\,\, \text{be a lattice with infinitesimal spacing}$

 $L':=\left\{ arepsilon'z' \ \middle|\ z'\in {}^{\star}({}^{*}\mathbf{Z}),\ -rac{H'}{2}\leq arepsilon'z'<rac{H'}{2}
ight\} ,\ ext{where}\ arepsilon'=rac{1}{H'}.$ We hereafter call a lattice with infinitesimal spacing, for short, an infinitesimal lattice.

Then we calculate the Fourier transform of a nonstandard functional of Gaussian type. The functional of Gaussian type means that the standard part of the image for $\alpha \in L^2$ is $\exp\left(-\pi\xi \int_{-\infty}^{\infty} \alpha^2(t)dt\right)$, for $\xi \in \mathbf{C}$ with $\mathrm{Re}(\xi) > 0$. We choose such a nonstandard functional and calculate the Fourier transform of it. Then the standard part of the Fourier transform satisfies that the image of $\alpha \in L^2$ is $C_{\xi} \exp\left(-\pi\xi^{-1} \int_{-\infty}^{\infty} \alpha^2(t)dt\right)$, in which C_{ξ} is a constant independent of b.