GROWTH SEQUENCES FOR FLAT DIFFEOMORPHISMS OF THE INTERVAL

NOBUYA WATANABE

1. Introduction and statement of results

Let f be a C^{1}-diffeomorphism of the interval $[0 ; 1]$. We define a growth sequence for f by

$$
\Gamma_{n}(f)=\exp \left\|\log D f^{n}\right\|=\max \left(\left\|D f^{n}\right\|,\left\|D f^{-n}\right\|\right)
$$

where f^{n} is nth iteration of f and $\left\|D f^{n}\right\|=\max _{x \in[0 ; 1]}\left|D f^{n}(x)\right|$.
Let $\operatorname{Fix}(f)$ be the set of fixed points of f. In the case f is of class C^{r}, for $x \in \operatorname{Fix}(f)$ x is called r-flat if $D f(x)=1$ and $D^{n} f(x)=0$ for $2 \leq n \leq[r] . f$ is called r-flat if every $x \in \operatorname{Fix}(x)$ is r-flat.

In this paper, we answer the question raised in the paper by L. Polterovich and M. Sodin [2]. We show :

Theorem 1. Let f be a 2-flat diffeomorphism of the interval. Then,

$$
\lim _{n \rightarrow \infty} \frac{\Gamma_{n}(f)}{n^{2}}=0 .
$$

Theorem 2. There exists an ∞-flat diffeomorphism f of the interval such that for every $\alpha<2$,

$$
\limsup _{n \rightarrow \infty} \frac{\Gamma_{n}(f)}{n^{\alpha}}=\infty
$$

Independently, A. Borichev shows similar results [1].

2. proof of Theorem 1

The argument in Proof of Theorem 1 is a slight modification of its in [2]. The following is useful.

Lemma 3. (Denjoy) Let f be a C^{2}-diffeommorphism of $[0 ; 1]$. If $J \in[0 ; 1]$ is a closed interval such that $\operatorname{Int}(J) \cap f(\operatorname{Int}(J))=\emptyset$ then there exists a positive constant C depending on f such that for every $n \in \mathbb{N}$ and every $x, y \in J$

$$
\frac{1}{C} \leq \frac{D f^{n}(x)}{D f^{n}(y)} \leq C
$$

