Isomorphism classes of quasiperiodic tilings by the projection method

Kazushi Komatsu and Kuniko Sakamoto

Abstract

Let $\mathcal{T}\left(W_{0}\right)$ be the space of quasiperiodic tilings by the projection method in terms of $\mathbf{R}^{d}=E \oplus E^{\perp}$ with a lattice L and the orthogonal projection $\pi: \mathbf{R}^{d} \rightarrow E$. We will consider the case that $L=\mathbf{Z}^{d}$ or (E, L) which corresponds to an exceptional folding of Coxeter groups. We determine when two tilings in $\mathcal{T}\left(W_{0}\right)$ belong to the same isomorphism class if $\pi \mid L$ is injective. As its application we have uncountably many isomorphism classes of quasiperiodic tilings by the projection method.

1. Introduction

First, we will prepare several basic definitions. A tiling T of the space \mathbf{R}^{p} is a countable family of closed sets called tiles: $T=\left\{T_{1}, T_{2}, \ldots\right\}$ such that $\cup_{i=1}^{\infty} T_{i}=\mathbf{R}^{p}$ and Int $T_{i} \cap \operatorname{Int} T_{j}=\phi$ if $i \neq j$. An isomorphism of tilings is bijection between families of tiles that is induced by isometry of the space \mathbf{R}^{p}. An aperiodic tiling is one that admits no translation isomorphisms to itself. A tiling satisfies the local isomorphism property if for each bounded patch of the tiling there exists a positive real number r such that a translation of its patch appears in any ball of radius r. An quasiperiodic tiling is defined to be an aperiodic tiling with the local isomorphism property.

In 1981 de Bruijn [2], [3] introduced the projection method to construct quasiperiodic tilings such as Penrose tilings. The projection method was extended to the higher dimensional hypercubic lattices [5] and to more general lattices [6]. To construct tilings by the projection method, the hypercubic lattices are most frequently used. Furthermore some famous tilings are obtained from root lattices (cf. [1]). We recall the definitions of tilings by the projection method (cf. [5],[6],[9],[12]). Let L be a lattice in \mathbf{R}^{d}. Let E be a p dimensional subspace of \mathbf{R}^{d}, and E^{\perp} its orthogonal complement with respect to the standard inner product. Let $\pi: \mathbf{R}^{d} \rightarrow E$ be the orthogonal projection

