Nihonkai Math. J. Vol.12(2001), 165-195

Minimal singular compactifications of the affine plane

HIDEO KOJIMA

Abstract. Let X be a minimal compactification of the complex affine plane \mathbb{C}^2 . In this paper, we show that X is a log del Pezzo surface of rank one and determine the singularity type of X in the case where X has at most quotient singularities.

2000 Mathematical Subject Classification. Primary 14J26, Secondary 14J17. Key words and phrases. Compactification, Log del Pezzo surface.

0 Introduction

A normal compact complex surface X is called a *compactification* of the complex affine plane \mathbb{C}^2 if there exists a closed subvariety Γ of X such that $X - \Gamma$ is biholomorphic to \mathbb{C}^2 . We denote simply the compactification by the pair (X, Γ) . A compactification (X, Γ) of \mathbb{C}^2 is said to be *minimal* if Γ is irreducible.

Remmert-Van de Ven [26] proved that if (X, Γ) is a minimal compactification of \mathbb{C}^2 and X is smooth then $(X, \Gamma) = (\mathbb{P}^2, \text{line})$. Brenton [3], Brenton-Drucker-Prins [4] and Miyanishi-Zhang [21] studied minimal compactifications of \mathbb{C}^2 with at most rational double points and proved the following results.

Theorem 0.1 (cf. [3], [4] and [21]) If (X, Γ) is a minimal compactification of \mathbb{C}^2 and X has at most rational double points, then X is a log del Pezzo surface of rank one (for the definition, see Definition 2.1). Further, if Sing $X \neq \emptyset$, then the singularity type of X is given as one of the following:

$$A_1, A_1 + A_2, A_4, D_5, E_6, E_7, E_8.$$