AN APPLICATION OF FURUTA INEQUALITY

Young Ok Kim

In this note, by the Furuta inequality, we give an elementary proof of a result of Aluthge and Wang as follows: If T is an invertible w-hyponormal operator, then T^2 is also w-hyponormal.

1. Introduction. Through this note, let T be a bounded linear operator on a Hilbert space \mathcal{H} . For positive operators A and B, we write $A \geq B$ if $A - B \geq 0$. We denote $A \succ B$ if A and B are invertible positive operators satisfying $A \geq (A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}$. Let T = U|T| be the polar decomposition of T. We define $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. The operator \tilde{T} is called the Aluthge transformation of T([1]). We denote $\hat{T} = |\tilde{T}|^{\frac{1}{2}}\tilde{U}|\tilde{T}|^{\frac{1}{2}}$. where $\tilde{T} = \tilde{U}|\tilde{T}|$ is the polar decomposition of \tilde{T} . An operator T is called w-hyponormal if $|\tilde{T}| \geq |T| \geq |\tilde{T}|$. The notion of w-hyponormal operators was introduced by Aluthge and Wang ([3],[5]). It is known that if T is p-hyponormal operator T is not in general([2]). Indeed, Halmos gave an example of a hyponormal operator T for which T^2 is not hyponormal. But the situation is different for log-hyponormal operators: if T is log-hyponormal operators, it is natural to ask whether similar result holds for invertible w-hyponormal operators. Aluthge and Wang gave an affirmative answer to this question and proved the following result:

PROPOSITION A ([5], Theorem 5.2). If T is an invertible w-hyponormal operator, T^2 is also w-hyponormal.

The aim of this note is to give an elementary proof of Proposition A by the Furuta inequality ([6]).

Mathematical subject classification (1991): 47A63.

Key words and phrases: Furuta inequality, w-hyponormal.