ON ALGEBRAICALLY TOTAL *-PARANORMALITY

Youngoh Yang

ABSTRACT. In this paper, we introduce the notion of algebraically *-TPN operators on a Hilbert space H as : An operator T is algebraically *-TPN if there exists a nonconstant complex polynomial p such that p(T) is totally *- paranormal. In particular, we prove that this class of *-TPN (or equivalently, totally *- paranormal) operators forms a proper subclass of algebraically *- TPN operators. Also we prove that Weyl's theorem and the spectral mapping theorem hold for algebraically *- TPN operators. Finally, we prove that if T is algebraically *- TPN, then f(T) satisfies Weyl's theorem where f is analytic on an open neighborhood of $\sigma(T)$.

0. Introduction

Let H be an infinite dimensional complex Hilbert space and $\mathcal{L}(H)$ denote the space of all bounded linear operators from H to H. If $T \in \mathcal{L}(H)$, we write N(T) and R(T) for the null space and range of T; $\sigma(T)$ for the spectrum of T and $\sigma_e(T)$ for the essential spectrum of T. Recall that an operator $T \in L(H)$ is Fredholm if its range R(T) is closed and both the null spaces N(T) and $N(T^*)$ are finite dimensional. The *index* of a Fredholm operator T, denoted by ind(T), is defined by

$$\operatorname{ind}(T) = \dim N(T) - \dim N(T^*) (= \dim N(T) - \dim R(T)^{\perp}).$$

An operator $T \in \mathcal{L}(H)$ is called Weyl if T is a Fredholm operator of index zero. The Weyl spectrum of T, denoted by $\omega(T)$, is defined by the formula

$$\omega(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl}\}.$$

Key words and phrases. Weyl's spectrum, *-paranormal operator, totally *-paranormal operator, Weyl's theorem,

¹⁹⁹¹ Mathematics Subject Classification. 47A10, 47A53, 47B05, 47B20,.