Real hypersurfaces in complex projective space satisfying a certain condition on Ricci tensors

Yoshio Matsuyama

1 Introduction

Let $C P^{n}, n \geq 3$ be an n-dimensional complex projective space with FubiniStudy metric of constant holomorphic sectional curvature 4, and let M be a real hypersurface $C P^{n}$. Let ν be a unit local normal vector field on M and $\xi=-J \nu$, where J denotes the complex structure of $C P^{n}$. M has an almost contact metric structure (ϕ, ξ, η, g) induced from J. We denote R and S the curvature tensor and the Ricci tensor of M, respectively. Many differential geometeres have studied M (cf. [1], [5], [6], [8], [9], [10], [11] and [12]) by using the structure (ϕ, ξ, η, g).

Typical examples of real hypersurfaces in $C P^{n}$ are homogeneous ones. Takagi [12] showed that all homogeneous real hypersurfaces in $C P^{n}$ are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or rank 2. Namely, he showed the following: Let M be a homogeneous real hypersurface of $C P^{n}$. Then M is a tube of radius r over one of the following Kaehler submanifolds:
$\left(A_{1}\right)$ hyperplane $C P^{n-1}$, where $0<r<\frac{\pi}{2}$,
$\left(A_{2}\right)$ totally geodesic $C P^{k}(1 \leq k \leq n-2)$,
(B) complex quadric Q_{n-1}, where $0<r<\frac{\pi}{4}$,
(C) $C P^{1} \times C P^{\frac{n-1}{2}}$, where $0<r<\frac{\pi}{4}$ and $n(\geq 5)$ is odd,
(D) complex Grassmann $C G_{2,5}$, where $0<r<\frac{\pi}{4}$ and $n=9$,
(E) Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\frac{\pi}{4}$ and $n=15$.

Due to his classification, we find that the number of distinct constant principal curvatures of a homogeneous real hypersurface is 2,3 or 5 . Here note that the vector ξ of any homogeneous real hypersurface M (which is a tube of radius r) is a principal curvature vector with principal curvature $\alpha=2 \cot 2 r$ with multiplicity 1 (See [1]) and that in the case of type $A_{1} M$ has two distinct principal curvatures and in the case of type A_{2} (resp. B) M has three distinct principal curvatures $t,-\frac{1}{t}$ and $\alpha=t-\frac{1}{t}$ (resp. $\frac{1+t}{1-t}, \frac{t-1}{t+1}$ and $\alpha=t-\frac{1}{t}$).

The following result is well known ([3]) : There are no real hypersurfaces M with parallel Ricci tensor in $C P^{n}, n \geq 3$. Moreover, $C P^{n}, n \geq 3$, does not

