SUBDIAGONAL ALGEBRAS IN NON- σ -FINITE VON NEUMANN ALGEBRAS

GUOXING JI

ABSTRACT. Let \mathfrak{A} be a subdiagonal algebra of a von Neumann algebra \mathcal{M} , which is not σ -finite, with respect to a faithful normal expectation Φ . In this note we generalize some results of subdiagonal algebras in the σ -finite case to the non- σ -finite case. We prove that there is a unique maximal subdiagonal algebra \mathfrak{A}_m with respect to Φ containing \mathfrak{A} . We show that if \mathfrak{A} is maximal subdiagonal and φ is a faithful normal semi-finite weight on \mathcal{M} such that $\varphi \circ \Phi = \varphi$, then \mathfrak{A} is σ_t^{φ} -invariant ($\forall t \in \mathbb{R}$), where $\{\sigma_t^{\varphi}\}_{t \in \mathbb{R}}$ is the modular automorphism group associated with φ . As an application, we also give several characterizations of \mathfrak{A}_m .

1. INTRODUCTION

In [1], Arveson introduced the notion of subdiagonal algebras in a von Neumann algebra on a Hilbert space to study the analyticity in operator algebras. At first, we start by given the definition of subdiagonal algebras. Let \mathcal{M} be a von Neumann algebra on a complex Hilbert space \mathcal{H} , and let Φ be a faithful normal positive idempotent linear map from \mathcal{M} onto a von Neumann subalgebra \mathfrak{D} of \mathcal{M} . A subalgebra \mathfrak{A} of \mathcal{M} , containing \mathfrak{D} , is called a subdiagonal algebra in \mathcal{M} with respect to Φ if

(i) $\mathfrak{A} \cap \mathfrak{A}^* = \mathfrak{D}$,

(ii) Φ is multiplicative on \mathfrak{A} , and

(iii) $\mathfrak{A} + \mathfrak{A}^*$ is σ -weakly dense in \mathcal{M} .

The algebra \mathfrak{D} is called the diagonal of \mathfrak{A} . Although subdiagonal algebras are not assumed to be σ -weakly closed in [1], the σ -weak closure of a subdiagonal algebra is again a subdiagonal algebra([1, Remark 2.1.2]). Thus we assume that our subdiagonal algebras are always σ -weakly closed. We say that \mathfrak{A} is a maximal subdiagonal algebra in \mathcal{M} with respect to Φ in case \mathfrak{A} is not properly contained in any other subalgebra of \mathcal{M} which is subdiagonal with respect to Φ . Put $\mathfrak{A}_0 = \{X \in \mathfrak{A} : \Phi(X) = 0\}$, and let \mathfrak{A}_m be the set of all $A \in \mathcal{M}$ such that $\Phi(\mathfrak{A}\mathfrak{A}_0) = \Phi(\mathfrak{A}_0\mathcal{A}\mathfrak{A}) = 0$. Arveson has proved that \mathfrak{A}_m is the unique maximal subdiagonal algebra with respect to Φ

¹⁹⁹¹ Mathematics Subject Classification. Primary 46L10; Secondary 47D25.

Key words and phrases. von Neumann algebra, subdiagonal algebra, weight.