Nihonkai Math. J. Vol.10 (1999), 151–155

ANALYTIC CLUSTER SETS

VALERIAN GAVRILOV, SHAMIL MAKHMUTOV*

ABSTRACT. We study the cluster sets for analytic functions in the unit disk. Lindelöf and Meier types theorems are proved for analytic cluster sets.

1. INTRODUCTION

Let $D = \{z : |z| < 1\}$ be the unit disk in the finite complex plane C and $\Gamma = \{z : |z| = 1\}$. For each pair of points $a, b \in D$ the hyperbolic distance between a and b is defined by

$$\sigma(a,b) = \frac{1}{2}\log\frac{|1-\overline{a}b|+|a-b|}{|1-\overline{a}b|-|a-b|}$$

and if L is any curve contained in D, we set

$$\sigma(a,L) = \inf_{b \in L} \sigma(a,b).$$

Let $h(\zeta, \alpha)$ denote the chord which is terminating at the point $\zeta = e^{i\theta} \in \Gamma$ and make up the angle of openning α , $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$, with the radius of D at ζ . The subset bounded by the chords $h(\zeta, \alpha_1)$ and $h(\zeta, \alpha_2)$ and by the circle $|z - \frac{1}{2}\zeta| = \frac{1}{2}$ is denoted by $\Delta(\zeta, \alpha_1, \alpha_2)$ (or, simply, by $\Delta(\zeta)$ if we are not interested in the magnitude of angle $\Delta(\zeta, \alpha_1, \alpha_2)$).

Let f be an arbitrary real or complex-valued function defined on D. We denote by $C(f,\zeta,D), C(f,\zeta,h(\zeta,\alpha))$ and $C(f,\zeta,\Delta(\zeta))$, respectively, the cluster set of f at the point $\zeta = e^{i\theta} \in \Gamma$ with respect to the disk D, the chord $h(\zeta,\alpha)$ and the angle $\Delta(\zeta)$.

 $\zeta = e^{i\theta} \in \Gamma$ with respect to the disk D, the chord $h(\zeta, \alpha)$ and the angle $\Delta(\zeta)$. A point $\zeta = e^{i\theta} \in \Gamma$ belongs to the set K(f) if $C(f, \zeta, \Delta_1(\zeta)) = C(f, \zeta, \Delta_2(\zeta))$ for any two angles $\Delta_1(\zeta)$ and $\Delta_2(\zeta)$ with the vertix at the point ζ . A point $\zeta = e^{i\theta} \in \Gamma$ belongs to the set C(f) if $\bigcap_{\Delta} C(f, \zeta, \Delta(\zeta)) = C(f, \zeta, D)$ (over all angles $\Delta(\zeta)$). By definition, $C(f) \subset K(f)$.

The structure of cluster sets of meromorphic functions in D was studied by many authors (see e.g. [CL], [G], [GH]). For example, by the strengthens version of Meier's theorem [G], for any meromorphic function f in D the unit circle Γ can be represented as union of disjoint sets of Meier points, precised Plessner points $I^*(f)$, set P(f) and a set E of first Baire category and of type F_{σ} on Γ . The sets $I^*(f)$ and P(f) are disjoint subsets of the set I(f) of Plessner points for a meromorphic function f in D and a point $\zeta = e^{i\theta} \in \Gamma$ belongs to the set I(f)if $\bigcap_{\Delta} C(f, \zeta, \Delta(\zeta)) = \Omega$, where Ω denotes the Reimann sphere. Moreover, by definition the sets $I^*(f)$ and P(f) are connected with the concept of a P-sequence, related the property of

Key words and phrases. Cluster set, Bloch function.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30D35, 30D40.

^{*}The second author was partially supported by the grant of Ministry of Education of the Russian Federation for basic research in 1998