ON SOME OPERATORS WHOSE PRODUCTS ARE POSITIVE

SHUHEI WADA

ABSTRACT. Let A, B be bounded linear operators on $\mathcal H$ satisfying

$$AB \ge 0$$
, $A^2B \ge 0$, $AB^2 \ge 0$.

We study the positivity of A and B under the condition $KerAB = \{0\}$ and the representation for contractions A, B using positive operators.

It is known that a bounded linear operator T on a Hilbert space \mathcal{H} which satisfies $T^n \geq 0$ $(n \geq 2)$ is not necessarily positive. In fact, if T satisfies that T^2, T^3 are positive, then T can be decomposed into a direct sum of operators N and S such that $N^2 = 0, S \geq 0$ (cf. [2]). So it is clear that $T^n \geq 0$ $(n \geq 2)$ and $\text{Ker}T = \{0\}$ imply the positivity of T. This result motivates the following conjecture:

For bounded linear operators A and B on \mathcal{H} satisfying

(*)
$$AB \ge 0, A^2B \ge 0 \text{ and } AB^2 \ge 0,$$

if it holds $KerAB = \{0\}$, then both A and B are positive.

We can easily see that this conjecture fails without the assumption $KerAB = \{0\}$ (see Example). As stated in the following, in many cases the above conjecture is true. But, in general, we do not know whether the assumption (*) and $KerAB = \{0\}$ imply the positivity of A and B or not. So our aim is, under these assumptions, to give a sufficient condition which implies their positivity.

Throughout this paper, we assume that bounded linear operators A and B satisfy the condition (*).

Lemma 1. If $\overline{\text{Ran}B} = \mathcal{H}$, then $A \geq 0$. Similarly, if $\overline{\text{Ran}A^*} = \mathcal{H}$, then $B \geq 0$.

Proof. By the assumption, we get

$$AB^2 = (AB^2)^* = B^*(AB)^* = B^*AB.$$

So we have,

$$\langle ABx|Bx\rangle = \langle B^*ABx|x\rangle = \langle AB^2x|x\rangle \ge 0,$$

for all $x \in \mathcal{H}$. Thus the condition $\overline{\operatorname{Ran}B} = \mathcal{H}$ implies A > 0.

Since $AB = (AB)^* = B^*A^*$, if we consider A and B instead of B^* and A^* , then the condition $\overline{\text{Ran}A^*} = \mathcal{H}$ implies $B \ge 0$. \square

We remark that the assumption (*) implies the positivity of A^nB and AB^n (n = 1, 2, ...) by the similar argument in the above proof.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47B65; Secondary 47B44.

The author would like to thank Professor Masaru Nagisa for the many invaluable discussions.