ON SOME OPERATORS WHOSE PRODUCTS ARE POSITIVE

Shuhei Wada

Abstract. Let A, B be bounded linear operators on \mathcal{H} satisfying

$$
A B \geq 0, A^{2} B \geq 0, A B^{2} \geq 0
$$

We study the positivity of A and B under the condition $\operatorname{Ker} A B=\{0\}$ and the representation for contractions A, B using positive operators.

It is known that a bounded linear operator T on a Hilbert space \mathcal{H} which satisfies $T^{n} \geq 0(n \geq 2)$ is not necessarily positive. In fact, if T satisfies that T^{2}, T^{3} are positive, then T can be decomposed into a direct sum of operators N and S such that $N^{2}=0, S \geq 0$ (cf. [2]). So it is clear that $T^{n} \geq 0(n \geq 2)$ and $\operatorname{Ker} T=\{0\}$ imply the positivity of T. This result motivates the following conjecture:

For bounded linear operators A and B on \mathcal{H} satisfying

$$
\begin{equation*}
A B \geq 0, A^{2} B \geq 0 \text { and } A B^{2} \geq 0 \tag{*}
\end{equation*}
$$

if it holds $\operatorname{Ker} A B=\{0\}$, then both A and B are positive.
We can easily see that this conjecture fails without the assumption $\operatorname{Ker} A B=\{0\}$ (see Example). As stated in the following, in many cases the above conjecture is true. But, in general, we do not know whether the assumption (*) and $\operatorname{Ker} A B=\{0\}$ imply the positivity of A and B or not. So our aim is, under these assumptions, to give a sufficient condition which implies their positivity.

Throughout this paper, we assume that bounded linear operators A and B satisfy the condition (*).
Lemma 1. If $\overline{\operatorname{Ran} B}=\mathcal{H}$, then $A \geq 0$. Similarly, if $\overline{\operatorname{Ran} A^{*}}=\mathcal{H}$, then $B \geq 0$.
Proof. By the assumption, we get

$$
A B^{2}=\left(A B^{2}\right)^{*}=B^{*}(A B)^{*}=B^{*} A B
$$

So we have,

$$
\langle A B x \mid B x\rangle=\left\langle B^{*} A B x \mid x\right\rangle=\left\langle A B^{2} x \mid x\right\rangle \geq 0,
$$

for all $x \in \mathcal{H}$. Thus the condition $\overline{\operatorname{Ran} B}=\mathcal{H}$ implies $A \geq 0$.
Since $A B=(A B)^{*}=B^{*} A^{*}$, if we consider A and B instead of B^{*} and A^{*}, then the condition $\overline{\operatorname{Ran} A^{*}}=\mathcal{H}$ implies $B \geq 0$.

We remark that the assumption (*) implies the positivity of $A^{n} B$ and $A B^{n}$ ($n=$ $1,2, \ldots$) by the similar argument in the above proof.

[^0]
[^0]: 1991 Mathematics Subject Classification. Primary 47B65; Secondary 47B44.
 The author would like to thank Professor Masaru Nagisa for the many invaluable discussions.

