EXISTENCE OF NONEXPANSIVE RETRACTIONS AND MEAN ERGODIC THEOREMS IN HILBERT SPACES

KOJI NISHIURA and WATARU TAKAHASHI

Abstract

Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $S = \{T_t : t \in S\}$ be an asymptotically nonexpansive semigroup on C such that the set F(S) of common fixed points of S is nonempty. We consider the existence of an ergodic retraction and prove that if $\{\mu_{\alpha}\}$ is an asymptotically invariant net of means, then for each $x \in C$, $\{T_{\mu_{\alpha}}x\}$ converges weakly to an element of F(S).

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Then, a mapping $T: C \to C$ is said to be *Lipschitzian* if there exists a nonnegative real number k such that

$$||Tx - Ty|| \le k ||x - y||$$
 for every $x, y \in C$.

T is said to be nonexpansive if k = 1. Let S be a semigroup. Then, a family $S = \{T_t : t \in S\}$ of mappings from C into itself is said to be a Lipschitzian semigroup on C with Lipschitz constants $\{k_t : t \in S\}$ if it satisfies the following:

(1) for each $t \in S$, there exists a nonnegative real number k_t such that

$$||T_t x - T_t y|| \le k_t ||x - y||$$
 for every $x, y \in C$;

(2) $T_{st}x = T_sT_tx$ for every $s, t \in S$ and $x \in C$.

We denote by F(S) the set of common fixed points of S. S is said to be a nonexpansive semigroup on C if $k_t = 1$ for every $t \in S$. S is also said to be an asymptotically nonexpansive semigroup on C if $\inf_s \sup_t k_{ts} \leq 1$ and $\sup_t k_t < \infty$. In particular, S is said to be a one-parameter asymptotically nonexpansive semigroup on C if $S = [0, \infty)$ and for each $x \in C$, the mapping $t \mapsto T_t x$ from S into C is continuous.

The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 by Baillon [1]: Let C be a closed convex subset of a Hilbert space and let T be a