EXISTENCE OF NONEXPANSIVE RETRACTIONS AND MEAN ERGODIC THEOREMS IN HILBERT SPACES

KOJI NISHIURA and WATARU TAKAHASHI

Abstract

Let C be a nonempty closed convex subset of a Hilbert space H. Let S be a semigroup and let $\mathcal{S}=\left\{T_{t}: t \in S\right\}$ be an asymptotically nonexpansive semigroup on C such that the set $F(\mathcal{S})$ of common fixed points of \mathcal{S} is nonempty. We consider the existence of an ergodic retraction and prove that if $\left\{\mu_{\alpha}\right\}$ is an asymptotically invariant net of means, then for each $x \in C,\left\{T_{\mu_{\alpha}} x\right\}$ converges weakly to an element of $F(\mathcal{S})$.

1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Then, a mapping $T: C \rightarrow C$ is said to be Lipschitzian if there exists a nonnegative real number k such that

$$
\|T x-T y\| \leq k\|x-y\| \text { for every } x, y \in C .
$$

T is said to be nonexpansive if $k=1$. Let S be a semigroup. Then, a family $\mathcal{S}=\left\{T_{t}\right.$: $t \in S\}$ of mappings from C into itself is said to be a Lipschitzian semigroup on C with Lipschitz constants $\left\{k_{t}: t \in S\right\}$ if it satisfies the following:
(1) for each $t \in S$, there exists a nonnegative real number k_{t} such that

$$
\left\|T_{t} x-T_{t} y\right\| \leq k_{t}\|x-y\| \text { for every } x, y \in C
$$

(2) $T_{s t} x=T_{s} T_{t} x$ for every $s, t \in S$ and $x \in C$.

We denote by $F(\mathcal{S})$ the set of common fixed points of \mathcal{S}. \mathcal{S} is said to be a nonexpansive semigroup on C if $k_{t}=1$ for every $t \in S . S$ is also said to be an asymptotically nonexpansive semigroup on C if $\inf _{s} \sup _{t} k_{t s} \leq 1$ and $\sup _{t} k_{t}<\infty$. In particular, \mathcal{S} is said to be a one-parameter asymptotically nonexpansive semigroup on C if $S=[0, \infty)$ and for each $x \in C$, the mapping $t \mapsto T_{t} x$ from S into C is continuous.

The first nonlinear ergodic theorem for nonexpansive mappings was established in 1975 by Baillon [1]: Let C be a closed convex subset of a Hilbert space and let T be a

