A class of homogeneous Riemannian manifolds

By

Hitoshi TAKAGI

(Received Nov. 30, 1970)

1. Introduction

R. L. Bishop and B. O'Neill [1] constructed a wide class of Riemannian manifolds of negative curvature by warped product using convex functions. For two Riemannian manifolds B and F, a warped product is denoted by $B \times {}_f F$ where f is a positive C^{∞} function on B. The purpose of this paper is to prove

THEOREM. Let (F, g) be a Riemannian manifold of constant curvature $K \leq 0$. Let E^n be an n-dimensional Euclidean space and let f be a positive C^{∞} function on E^n . If either $E^n \times {}_f F$ is homogeneous (Riemannian) or the Ricci tensor of $E^n \times {}_f F$ is parallel, then $E^n \times {}_f F$ is locally symmetric.

The proof of the last theorem is motivated by [2], in which S. Tanno deals with some related problems.

2. The curvature tensor of $\mathbf{E}^{\mathbf{n}} \times_{\mathbf{f}} \mathbf{F}$

Let (F, g) be a Riemannian manifold and let E^n be a Euclidean *n*-space. We consider the product manifold $E^n \times F$. For vector fields A, B, C, etc. on E^n , we denote vector fields (A, 0), (B, 0), (C, 0), etc. on $E^n \times F$ by also A, B, C, etc. Likewise, for vector fields X, Y, etc. on F, we denote vector fields $(0, X), (0, Y_1)$, etc. on $E^n \times F$ by X, Y, etc.

We denote the inner product of A and B on E^n by $\langle A, B \rangle$. Let f be a positive C^{∞} -function on E^n . Then the (Riemannian) inner product \langle , \rangle for A+X and B+Y on the warped product $E^n \times {}_fF$ at (a, x) is given by (cf. [1].)

$$\langle A+X, B+Y \rangle_{(a,x)} = \langle A, B \rangle_{(a)} + f^2(a)g_x(X, Y).$$

We extend the function f on E^n to that on $E^n \times {}_fF$ by f(a,x)=f(a). The Riemannian connections defined by <, > on E^n and $E^n \times {}_fE$ are denoted by ∇^o and ∇ , respectively. The Riemannian connection defined by g on F is denoted by D. Then we have the identities (cf. Lemma 7.3, [1].)