On extreme points of the unit ball of a non-commutative L^P-space with 0<p≤1

By Keiichi Watanabe

(Received December 12, 1988)

1. Introduction

The notion of an extreme point is playing an important role in the theory of topological vector spaces, in particular, that of Banach spaces. Some properties of a linear map can be stated in terms of extreme points of a certain convex set of linear maps. For example, a non-zero representation of a C^* -algebra is irreducible if and only if it is spatially equivalent to a GNS-representation associated with a pure state (that is an extreme point of the state space). R. Kadison gave a characterization of extreme points of the unit ball of a C^* -algebra, and he applied it to classify isometries between C^* -algebras. Thus it is fundamental to characterize extreme points of the unit ball of a (quasi-) Banach space associated with an operator algebra. For a commutative L^p -space $L^p(X, \mu)$ of measurable functions, the results are well-known. In case of 1 , the unit sphere $is precisely the set of all extreme points of the unit ball. If <math>p = \infty$, the set of all extreme points is exactly the unitary group of $L^{\infty}(X, \mu)$ ([6, Chapter I, Lemma 10.11]). For $0 , there exists an extreme point if and only if the measure space <math>(X, \mu)$ has an atom.

Our first aim in this paper is to give a necessary and sufficient condition for the existence of an extreme point of the closed unit ball of a non-commutative L^p -space. Secondarily, we shall determine the form of each extreme point completely. However, when $1 , it is shown that the Clarkson-McCarthy's inequality holds for non-commutative <math>L^p$ -spaces associated with von Neumann algebras (see [1], [3], [7]). Therefore they are uniformly convex, in particular, strictly convex. Thus the set of all extreme points coincides with the unit sphere. For $p = \infty$, L^{∞} -space was defined to be the von Neumann algebra itself and so it is a C^* -algebra. If S is the unit ball of a C^* -algebra A, the following facts are well-known; (i) there exists an extreme point x in S if and only if A is unital; and (ii) when A is unital, then $x \in S$ is extreme if and only if x^*x is a projection such that $(1-x^*x)A(1-xx^*)=\{0\}$ ([6, Chapter I, Theorem 10.2]). Therefore, we may concentrate our attention to the case of 0 . Finally we also consider