On a modified Robbins-Monro procedure approximating the root from below with errors in setting the x-levels

By
Eiichi Isogal

(Received November 30, 1978)

1. Introduction and Summary

In the case of finding the unique root θ of the equation $M(x)=0$, situations may occure where even the precise setting of the x -levels of an experiment is impossible without error. Dupač and Král [3] and Watanabe [6] dealt with these situations. On the other hand, there are cases in which it is advantageous to use a process which converges to θ from below. Anbar [1] gave a modified Robbins-Monro (RM) procedure for guaranteeing that with probability one the procedure overestimates θ only finitely many times. In this paper, it is shown that assuming that the error in x -level can be made small at some rate at each step, the modified RM procedure overestimates θ only finitely many times with probability one.

This paper consists of five sections. In section 2, we shall give some assumptions, notations and a lemma. In section 3, we shall show a convergence theorem. Section 4 will give some lemmas which are used in section 5 . In section 5 , we shall present two theorems which show that with probability one the modified RM process overestimates θ only finitely many times and give an asymptotic normality of the process.

2. Preliminaries

Let R be the real line. Let $\left\{U^{n}(x)\right\}$ and $\left\{V^{n}(x)\right\}$ be two sequences of random variables which depend on parameter $x \in R$. Suppose that for each $\mathrm{n}, U^{n}(x)$ and $V^{n}(x)$ are measurable functions of x. Further, suppose $E\left[U^{n}(x)\right]=E\left[V^{n}(x)\right]=0$ for all $x \in R$ and all $n \geqslant 1$.

Let $M(x)$ be a real-valued measurable function on R, let θ be the unique root of $M(x)$ $=\alpha$ where α is an arbitrary given number.

Let us define the mdified RM procedure proposed by Anbar [1] as follows: Let X_{1} be a random variable with $E\left[X_{1}{ }^{2}\right]<\infty$ and let define X_{2}, X_{3}, \cdots by the recursive relation

$$
\begin{equation*}
X_{n+1}=X_{n}-a_{n}\left[M\left(X_{n}+u_{n}\right)-v_{n}-\alpha+b_{n}\right] \quad n=1,2, \cdots \cdots \tag{2.1}
\end{equation*}
$$

