ESTIMATING COMMON FIXED POINTS OF TWO NONEXPANSIVE MAPPINGS BY STRONG CONVERGENCE

SAFEER HUSSAIN KHAN

ABSTRACT. In this paper, we introduce an iteration scheme defined by

$$x_0 = x \in C, \ x_{n+1} = \alpha_n x + (1 - \alpha_n) U_n x_n,$$

$$U_n = \gamma_n T(\beta_n S + (1 - \beta_n) I) + (1 - \gamma_n) I, \ n = 0, 1, 2, \dots,$$

where S and T are nonexpansive mappings from a closed convex subset of a Banach space into itself and $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are in [0,1]. This scheme contains all four schemes given by Mann, Ishikawa, Das-Debata and Halpern. Using this scheme we approximate common fixed points of S and T.

1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping $T:C\to C$ is called nonexpansive if $\|Tx-Ty\|\leq \|x-y\|$ for all $x,y\in C$. A number of iteration schemes have been introduced to approximate the fixed points of nonexpansive mappings. Mann [6] introduced the following iteration scheme:

(1)
$$x_1 \in C, \ x_{n+1} = \alpha_n T x_n + (1 - \alpha_n) x_n,$$

for all n = 1, 2, ..., where $\{\alpha_n\}$ is in [0, 1]. Ishikawa [4] gave the following iteration scheme:

(2)
$$x_1 \in C$$
, $x_{n+1} = \alpha_n T(\beta_n T x_n + (1 - \beta_n) x_n) + (1 - \alpha_n) x_n$,

for all n = 1, 2, ..., where $\{\alpha_n\}$ and $\{\beta_n\}$ are in [0, 1]. Das and Debata [2] defined $\{x_n\}$ using two mappings S and T as follows:

(3)
$$x_1 \in C, \ x_{n+1} = \alpha_n S(\beta_n T x_n + (1 - \beta_n) x_n) + (1 - \alpha_n) x_n$$

¹⁹⁹¹ Mathematics Subject Classification. Primary: 47H09, 49M05.

Key words and phrases. Nonexpansive mapping, Banach limit, fixed point, strong convergence, iteration scheme.