A sequential procedure with finite memory for some statistical problem

By

Kensuke TANAKA, Eiichi ISOGAI and Seiichi IWASE

(Received October 24, 1973)

1. Introduction

In this paper we shall give a sequential procedure with finite memory for the following statistical problem, so that the limiting probability of making the incorrect choice is made zero: find a normal population with the same mean as $N(\theta, \sigma_1^2)(\theta \text{ and } \sigma_1^2 \text{ are un-}$ known to us) from *m* normal populations $N(\theta_i, \sigma_2^2)(\theta_i \text{ and } \sigma_2^2 \text{ are unknown to us for } i = 1$, \dots, m). Here, it is assumed that there exists only one normal population with the same mean as $N(\theta, \sigma_1^2)$. Statistical problems like this, for example, problems of testing hypotheses with finite memory, were investigated by T. M. Cover [1] and [2]. Let $N(\theta, \sigma_1^2)$ be denoted by Π and $N(\theta_i, \sigma_2)$ by $\Pi_i (i = 1, \dots, m)$. After the preceding experiment let it be assumed that Π_i is decided to have the same mean as Π . Then we draw independently a sample X from Π and X_i from Π_i and make $|X-X_j|$. Comparing $|X-X_i|$ with a preassigned positive number l, we decide whether or not Π_i has the same mean as Π . If Π_i is decided not to have the same mean, we draw independently m-1 samples X from Π and a sample X_j from each Π_j except Π_i , respectively and make $|X-X_j|$ (j=1, ..., m, $j \neq i$). By comparing them with l, decide which population has the same mean as Π . If II_i is decided to have the same mean, we proceed with the next experiment. Now we shall state finite memory. Here, there are m specified memories T_i $(i = 1, \dots, m)$. According to comparison described above, one of m memories is used. If memory T_i is used, Π_i is decided to have the same mean. That is, "memory T_i is used" is equal to " Π_i is decided to have the same mean." Hence at each experiment memory is changed.

Next, we shall describe a process of the experiments. The *n*th stage of the experiments consists of the d_n experiments described above, where d_n tends to infinity as $n \rightarrow \infty$. We call " Π_i is favorable at the *n*th stage" if after the d_n experiments memory T_i is used. Therefore in this statistical problem we use only *m* memories. Let $\overline{P}_i(d_n)$ denote the probability of memory T_i at the *n*th stage, that is, the probability of Π_i being decided to have the same mean after the d_n experiments. We denote by $P_i(n)$ the stationary probability that Π_i is favorable at the *n*th stage by using a Markov chain M(n) described