A sequential procedure with finite memory for some statistical problem

By
Kensuke Tanaka, Eiichi Isogai and Seiichi Iwase

(Received October 24, 1973)

1. Introduction

In this paper we shall give a sequential procedure with finite memory for the following statistical problem, so that the limiting probability of making the incorrect choice is made zero: find a normal population with the same mean as $N\left(\theta, \sigma_{1}{ }^{2}\right)\left(\theta\right.$ and $\sigma_{1}{ }^{2}$ are unknown to us) from m normal populations $N\left(\theta_{i}, \sigma_{2}{ }^{2}\right)\left(\theta_{i}\right.$ and $\sigma_{2}{ }^{2}$ are unknown to us for $i=1$, $\cdots, m)$. Here, it is assumed that there exists only one normal population with the same mean as $N\left(\theta, \sigma_{1}{ }^{2}\right)$. Statistical problems like this, for example, problems of testing hypotheses with finite memory, were investigated by T. M. Cover [1] and [2]. Let $N\left(\boldsymbol{\theta}, \boldsymbol{\sigma}_{1}{ }^{2}\right)$ be denoted by Π and $N\left(\theta_{i}, \sigma_{2}{ }^{2}\right)$ by $\Pi_{i}(i=1, \cdots, m)$. After the preceding experiment let it be assumed that Π_{i} is decided to have the same mean as Π. Then we draw independently a sample X from Π and X_{i} from Π_{i} and make $\left|X-X_{j}\right|$. Comparing $\left|X-X_{i}\right|$ with a preassigned positive number l, we decide whether or not Π_{i} has the same mean as Π. If Π_{i} is decided not to have the same mean, we draw independently $m-1$ samples X from Π and a sample X_{j} from each Π_{j} except Π_{i}, respectively and make $\left|X-X_{j}\right|(j=1, \cdots, m$, $j \neq i$). By comparing them with l, decide which population has the same mean as Π. If I_{i} is decided to have the same mean, we proceed with the next experiment. Now we shall state finite memory. Here, there are m specified memories $T_{i}(i=1, \cdots, m)$. According to comparison described above, one of m memories is used. If memory T_{i} is used, Π_{i} is decided to have the same mean. That is, "memory T_{i} is used" is equal to " Π_{i} is decided to have the same mean." Hence at each experiment memory is changed.

Next, we shall describe a process of the experiments. The nth stage of the experiments consists of the d_{n} experiments described above, where d_{n} tends to infinity as $n \longrightarrow$ ∞. We call " Π_{i} is favorable at the nth stage" if after the d_{n} experiments memory T_{i} is used. Therefore in this statistical problem we use only m memories. Let $\bar{P}_{i}\left(d_{n}\right)$ denote the probability of memory T_{i} at the nth stage, that is, the probability of Π_{i} being decided to have the same mean after the d_{n} experiments. We denote by $P_{i}(n)$ the stationary probability that Π_{i} is favorable at the nth stage by using a Markov chain $M(n)$ described

