THE RELATIVE SYMPLECTIC CONE AND T^2 -FIBRATIONS

Josef G. Dorfmeister and Tian-Jun Li

In this note we introduce the notion of the relative symplectic cone \mathcal{C}_M^V . As an application, we determine the *symplectic cone* \mathcal{C}_M of certain T^2 -fibrations. In particular, for some elliptic surfaces we verify the conjecture in [17]: If M underlies a minimal Kähler surface with $p_g>0$, the symplectic cone \mathcal{C}_M is equal to $\mathcal{P}^{c_1(M)}\cup\mathcal{P}^{-c_1(M)}$, where $\mathcal{P}^\alpha=\{e\in H^2(M;\mathbb{R})|e\cdot e>0 \text{ and } e\cdot \alpha>0\}$ for nonzero $\alpha\in H^2(M;\mathbb{R})$ and $\mathcal{P}^0=\{e\in H^2(M;\mathbb{R})|e\cdot e>0\}$.

Contents

1.	Introduction	2
2.	The relative symplectic cone	4
	2.1. Preliminaries	4
	2.1.1. Minimality	5
	2.1.2. Relative inflation	6
	2.2. Definition and properties	6
	2.3. T^2 -bundles over T^2	8
	2.4. Manifolds with $b^+=1$	8
	2.5. Proof of Lemma 2.14	12
3.	The gluing formula	16
	3.1. Smooth fiber sum	16
	3.2. Symplectic sum and symplectic cut	17
	3.3. $\mathcal{C}^{V}_{X\#_{V}Y}$ from \mathcal{C}^{V}_{X} and \mathcal{C}^{V}_{Y}	18
	3.3.1. The cone of sum forms	18
	3.3.2. The second homology of $M = X \#_V Y$	19
	3.3.3. Good sums	23
4.	Symplectic cone of certain T^2 -fibrations	25

1