JOURNAL OF SYMPLECTIC GEOMETRY Volume 6, Number 3, 239–246, 2008

ON THE SYMPLECTIC FORM OF THE MODULI SPACE OF PROJECTIVE STRUCTURES

PABLO ARÉS-GASTESI AND INDRANIL BISWAS

Let S be a C^{∞} compact connected oriented surface whose genus is at least two. Let $\mathcal{P}(S)$ be the moduli space of isotopic classes of projective structures associated to S. The natural holomorphic symplectic form on $\mathcal{P}(S)$ will be denoted by Ω_P . The natural holomorphic symplectic form on the holomorphic cotangent bundle $T^*\mathcal{T}(S)$ of the Teichmüller space $\mathcal{T}(S)$ associated to S will be denoted by Ω_T . Let $e: \mathcal{T}(S) \longrightarrow \mathcal{P}(S)$ be the holomorphic section of the canonical holomorphic projection $\mathcal{P}(S) \longrightarrow \mathcal{T}(S)$, given by the Earle uniformization. Let $T_e: T^*\mathcal{T}(S) \longrightarrow \mathcal{P}(S)$ be the biholomorphism constructed using the section e. We prove that $T_e^*\Omega_P = \pi \cdot \Omega_T$. This remains true if e is replaced by a large class of sections that include the one given by the Schottky uniformization.

1. Introduction

A projective structure on a smooth compact connected oriented surface S is defined by giving a covering of S by coordinate charts, where the coordinate functions are orientation preserving diffeomorphisms to open subsets of \mathbb{C} , such that all the transition functions are Möbius transformations. Two projective structures are called equivalent if they differ by a diffeomorphism of S homotopic to the identity map. Let $\mathcal{P}(S)$ denote the equivalence classes of projective structures on S.

The Teichmüller space $\mathcal{T}(S)$ for S parametrizes all the equivalence classes of complex structures on S compatible with its orientation; two complex structures are called equivalent if they differ by a diffeomorphism of S homotopic to the identity map. Both $\mathcal{P}(S)$ and $\mathcal{T}(S)$ are complex manifolds,