ON THE ZEROS OF SOLUTIONS OF HYPERBOLIC EQUATIONS OF NEUTRAL TYPE

Norio Yoshida
Department of Mathematics, Faculty of Science, Toyama University, Gofuku, Toyama 930, Japan

(Submitted by: A.R. Aftabizadeh)

Abstract

Hyperbolic equations of neutral type are studied and sufficient conditions are given that every solution of certain boundary value problems has a zero in bounded domains. The results are based on the condition for the non-existence of positive solutions of ordinary differential inequalities.

Recently there has been an increasing interest in studying the oscillatory behavior of solutions of partial differential equations of neutral type (see [1-3]). To the author's knowledge, the first attempt in this direction was made by Mishev and Bainov [1] who studied the hyperbolic equation of neutral type.

Let G be a bounded domain in \mathbb{R}^{n} with smooth boundary ∂G, and let $\Omega=$ $G \times(0, \infty)$. We are concerned with the oscillatory behavior of solutions of the hyperbolic equation of neutral type

$$
\begin{equation*}
u_{t t}(x, t)-[\Delta u(x, t)+\alpha \Delta u(x, t-\tau)]+c(x, t, u(x, t), u(x, t-\sigma))=f(x, t) \tag{1}
\end{equation*}
$$

$(x, t) \in \Omega$, where Δ is the Laplacian in \mathbb{R}^{n}. We consider three kinds of boundary conditions:

$$
\begin{array}{ll}
u=\psi & \text { on } \partial G \times(0, \infty) \\
\frac{\partial u}{\partial \nu}=\tilde{\psi} & \text { on } \partial G \times(0, \infty) ; \\
\frac{\partial u}{\partial \nu}+\mu u=0 & \text { on } \partial G \times(0, \infty) \tag{3}
\end{array}
$$

where $\psi, \tilde{\psi}$ are continuous functions on $\partial G \times(0, \infty), \mu$ is a nonnegative continuous function on $\partial G \times(0, \infty)$ and ν denotes the unit exterior normal vector to ∂G. In [1], Mishev and Bainov obtained sufficient conditions for the existence of arbitrarily large zeros of solutions of the problem (1), (B_{2}). The purpose of this paper is to

[^0]
[^0]: Received September 22, 1988.
 Partially supported by Grant-in-Aid for Scientific Research (No. 63540156), Ministry of Education, Japan.
 AMS Subject Classifications: 35B05.

