Differential and Integral Equations, Volume 3, Number 3, May 1990, pp. 589-600.

ON DIFFERENTIAL EQUATIONS IN ORDERED BANACH SPACES WITH APPLICATIONS TO DIFFERENTIAL SYSTEMS AND RANDOM EQUATIONS

Seppo Heikkilä

University of Oulu, Department of Mathematics, SF-90570 Oulu, Finland

(Submitted by: V. Lakshmikantham)

1. Introduction. Given a closed cone K in a Banach space E, consider the initial value problem (IVP)

$$x'(t) = f(t, x(t))$$
 a.e. $t \in I, \quad x(0) = c,$ (1)

where I = [0, T], T > 0, $c \in K$ and $f : I \times K \to E$. By a solution of (1) we mean a continuous function $x: I \to K$ which is almost everywhere differentiable on I, for which $||x(\cdot)||$ is absolutely continuous, and which satisfies (1) (cf. [14]). Thus, x is a solution of (1) if and only if it satisfies the integral equation

$$x(t) = c + \int_{0}^{t} f(s, x(s)) \, ds \tag{2}$$

on *I*. An existence of such a solution x necessitates only Bochner integrability of $f(\cdot, x(\cdot))$ on *I*, which allows f to be rather discontinuous (cf. [13]). But this is not sufficient. If, for instance, $E = \mathbf{R}$, $0 < \delta \leq T$, and

$$f(t,y) = \begin{cases} 1, & \text{ for } y = 0, \ t \in [0,\delta], \\ 0, & \text{ for other } (t,y) \in I \times \mathbf{R}_+ \,, \end{cases}$$

it is easy to see that IVP (1) is nonsolvable, even locally, as c = 0. However, f is continuous on $I \times \mathbf{R}_+$, except on the segment $[0, \delta] \times \{0\}$.

The classical Carathéodory conditions (cf. [2]), which ensure the solvability of (1) for each choice of c when $E = \mathbf{R}^n$, do not allow the previous kind of discontinuity. In fact, they imply (cf. [10]) for each $\delta > 0$ the existence of a closed subset B of I whose L-measure is greater than $T - \delta$, such that f is jointly continuous on $B \times \mathbf{R}^n$.

If E is infinite-dimensional, the Carathéodory conditions do not ensure the solvability of IVP (1). Counter examples, where f is even continuous, are found for instance in [3], where is also given sufficient strengthenings to Carathéodory conditions (uniform continuity of f(t, y) in y, etc; see also [11]).

Received for publication August 4, 1988.

AMS Subject Classifications: 34A34, 34G20, 47H07.