PSEUDO-MONOTONICITY AND THE LERAY-LIONS CONDITION

JEAN-PIERRE GOSSEZ

Département de Mathématique, C.P. 214, Université Libre de Bruxelles, 1050 Bruxelles, Belgium

VESA MUSTONEN

Department of Mathematics, University of Oulu, SF-90570 Oulu, Finland

(Submitted by: Peter Hess)

1. Introduction. Let Ω be a bounded open subset of \mathbb{R}^N , let 1 and let <math>T be the mapping from $W_0^{1,p}(\Omega)$ to $W^{-1,p'}(\Omega)$ which is generated by the differential operator

$$-\sum_{i=1}^{N} \frac{\partial}{\partial x_i} a_i(x, u, \nabla u) + a_0(x, u, \nabla u), \tag{1.1}$$

where the functions $a_i(x, \eta, \zeta)$ and $a_0(x, \eta, \zeta)$ satisfy suitable regularity and growth assumptions. The standard condition which guarantees that T is pseudo-monotone is the so-called Leray-Lions condition:

$$\sum_{i=1}^{N} (a_i(x,\eta,\zeta) - a_i(x,\eta,\bar{\zeta}))(\zeta_i - \bar{\zeta}_i) > 0$$
(1.2)

for almost every $x \in \Omega$, all $\eta \in \mathbb{R}$ and all ζ , $\bar{\zeta} \in \mathbb{R}^N$ with $\zeta \neq \bar{\zeta}$ (cf. [2, 7, 8]). In this paper we are interested in the necessity of condition (1.2) as well as in the sufficiency of a related weaker condition.

It is known that the pseudo-monotonicity of T implies that

$$\sum_{i=1}^{N} (a_i(x,\eta,\zeta) - a_i(x,\eta,\bar{\zeta}))(\zeta_i - \bar{\zeta}_i) \ge 0$$
(1.3)

for almost every $x \in \Omega$, all $\eta \in \mathbb{R}$ and all ζ , $\overline{\zeta} \in \mathbb{R}^N$. This is proved in [1] when $a_0 \equiv 0$, but the arguments given there easily extend to the situation $a_0 \not\equiv 0$. In Section 2 we study the necessity of the *strict* condition (1.2). We restrict ourselves there to operators where the top order terms a_i only depend on ∇u . We show that if, for any lower order term a_0 , the corresponding mapping T is pseudo-monotone, then the top order terms a_i satisfy (1.2). Condition (1.2) thus appears, for this class

Received December 1991.

AMS Subject Classification: 35J65, 47H05.