ON THE SUM OF MAXIMAL MONOTONE OPERATORS AND AN APPLICATION TO A NONLINEAR INTEGRO-DIFFERENTIAL EQUATION

Paul Egberts
Faculty of Mathematics and Informatics, Delft University of Technology Mekelweg 4, 2628 CD Delft, the Netherlands

(Submitted by: G. Da Prato)

1. Introduction. This paper deals with the sum of a linear (\mathcal{L}) and a nonlinear (\mathcal{A}) maximal monotone operator in a Hilbert space. We prove that, under certain conditions, the sum $\mathcal{L}+\mathcal{A}$ with domain $D(\mathcal{L}+\mathcal{A})=D(\mathcal{L}) \cap D(\mathcal{A})$ is maximal monotone as well. As an application we prove existence and uniqueness of a strong solution (see Section 3) of nonlinear integro-differential equations of the form

$$
\left\{\begin{array}{l}
\frac{d}{d t} \int_{0}^{t} k(t-s) u(s) d s+A u(t) \ni f(t), \quad t \in(0, T) \tag{1}\\
u(0)=0
\end{array}\right.
$$

where A is a nonlinear, possibly multivalued, maximal monotone operator in a real Hilbert space ($H,\langle\cdot, \cdot\rangle,|\cdot|$) normalized by $0 \in A 0, k \in L^{1}(0, T)$ a real-valued function and $f \in L^{2}(0, T ; H)$ a given function.

As a motivation for studying equations of the form (1), consider the nonlinear Volterra equation

$$
\begin{equation*}
u(t)+\int_{0}^{t} b(t-s) A u(s) d s \ni u_{0}+\int_{0}^{t} b(t-s) f(s) d s, \quad t \in[0, T] \tag{2}
\end{equation*}
$$

where $b \in L^{1}(0, T), u_{0} \in H$ and $f \in L^{2}(0, T ; H)$. As a general reference on Volterra equations we mention Gripenberg et al. [19]. Equations of the type (2) have been studied first by Barbu [3] and Londen [23] where A is the subdifferential of a convex function. The case where A is maximal monotone, not necessarily a subdifferential, has been considered by Gripenberg [17]. The equation in the Banach space setting, that is, equation (2) with A an m-accretive operator in a Banach space $X, u_{0} \in X$ and f a function taking values in X, has been treated by Crandall and Nohel [14] and more recently by Gripenberg [18].

Motivated by positivity preserving and invariance properties for equation (2) in an ordered Banach space, Clément and Nohel [11] introduced a class of kernels b, called completely positive in Clément and Nohel [12]. By [12, Theorem 2.2], a kernel

[^0]
[^0]: Received June 1992.
 AMS Subject Classification: 47H05, 47H17, 45 K 05.

