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1. Introduction. In 1986, Ni and Serrin established some existence and non
existence theorems for radial ground state solutions of the partial differential equation

div(A(|Du|)Du) + f(u) =0, (1.1)
where Du denotes the gradient of w,
feC®), f(0)=0, f(u)>0 nearu=0,

and either A comes from the degenerate Laplace operator, namely A(|p|) = |p|™~?

m > 1, or

)

Ae CHRT;RY), A(p)=0(1) as p—0T, (1.2)

as for the mean curvature operator. Of course (1.1) reduces to a semilinear Laplace
equation when A = 1.

Specifically, a ground state is a nonnegative, nontrivial solution u of (1.1) in R™,
n > 2, which tends to zero at co. Since one can generally expect ground states to
be radially symmetric, the main results of [2] are based on the study in R* of the
ordinary differential equation

A D) 4 f(w) =0, t=|z| e RY  (=d/dt).  (1.3)

The purpose of this paper is to extend in a unified form the non-existence theorems
of [2] to general variational equations of the form

l9()Gp(u)) + g(t) f(t,u) =0, (1.4)
where
G(p) € C*(R), G is strictly convex in R, G(0) = G,(0) =0,
Gy(p) = O(p|™™") as p— 0T, m>1;
f€CR xR), and F(t,u) = [ f(t,v)dv is of class C'(R{ x R); (I)
g € C'RY)NCRY), 9(0)=0,
g>0, §=¢g'/g>0in RT.

Indeed (1.3) is the special case of (1.4) when g(t) = t"~! and G(p) = ¢(|p|), so that
A(lp|) = ¢'(|Ip|)/|p|. For the degenerate Laplace operator, namely G(p) = [p|™/m,
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