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1. Introduction. This paper represents a further contribution to the problem
of characterizing all elliptic finite-gap solutions of the stationary Korteweg-de Vries
(KdV) hierarchy, a problem posed, e.g., in [22, p. 152]. This theme dates back to a
1940 paper of Ince [15] who studied the Lamé potential

q(z) = —s(s+ 1)P(xr +w3), seN,zeR (1)
in connection with the second-order ordinary differential equation
V(B )+ lg(z) - EJp(E,2) =0, EeC. (2)

Here P(z) = P(z;w1,ws) denotes the elliptic Weierstrass function with fundamental
periods (f.p.) 2w1, 2ws, F(ws/w1) # 0 (see [1], Ch. 18). In the special case where wy is
real and ws is purely imaginary the potential ¢ is real-valued and Ince’s striking result
[15], in modern spectral theoretic terminology, yields the fact that the self-adjoint

operator L associated with the differential expression % +¢ in L%(R) has a finite-gap
(or finite-band) spectrum of the type

S
o(L) = (—o0, Ea] U [Bom—1, Bom-1y], FEas < Ea2s—1 < -+ < Ej. (3)

In obvious notation, any potential ¢ that amounts to a finite-gap spectrum of the type
(3) is called a finite-gap potential. The proper extension of this notion to complex-
valued meromorphic ¢ on the basis of elementary algebro-geometrical concepts is ob-
tained as follows: The starting point is the definition of the so called KdV hierarchy.
Let L be the second-order differential expression

2

L=
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