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1. Introduction

A large number of geophysical fluids are modeled by the so-called “Prim-
itive Equations.” This model is obtained formally from the Navier–Stokes
equations, with anisotropic (eddy) viscosity, assuming two important sim-
plifications: “hydrostatic pressure” (depending linearly on the depth) and
“rigid lid hypothesis” (fixed water surface); see [10], [14] and references
therein cited.

The model. For simplicity, we take constant density and assume that
the effects due to the temperature (and salinity) can be decoupled from the
dynamic of the flow. Then, we have a three-dimensional flow induced by the
wind tension on the surface and by the centripetal and Coriolis forces. When
the Earth’s curvature is not considered, we can use Cartesian coordinates
instead of spherical coordinates (see in Lions–Temam–Wang [12] the model
with spherical coordinates); hence, the Lipschitz-continuous domain Ω is
given by

Ω = {(�x, z) ∈ R
3; �x ∈ ω,−D(�x) < z < 0}, (1)

where ω ⊆ R
2 is an open domain and D : ω → R+ is the depth function. The

different boundaries of Ω (surface, bottom and sidewalls) are respectively
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