A NEW MEDIAN FORMULA WITH APPLICATIONS TO PDE BASED DENOISING*

YINGYING LI ${ }^{\dagger}$ AND STANLEY OSHER ${ }^{\ddagger}$

Abstract

We develop a simple algorithm for finding the minimizer of the function $E(x)=$ $\sum_{i=1}^{n} w_{i}\left|x-a_{i}\right|+F(x)$, when the w_{i} are nonnegative and F is strictly convex. If F is also differentiable and F^{\prime} is bijective, we obtain an explicit formula in terms of a median. This enables us to obtain approximate solutions to certain important variational problems arising in image denoising. We also present a generalization with $E(x)=J(x)+F(x)$ for $J(x)$ a convex piecewise differentiable function with a finite number of nondifferentiable points.

Key words. Convex optimization, ℓ_{1} minimization, TV denoising, Bregman iterative method.

AMS subject classifications. 46N10, 94A08.

1. Introduction

Given $a_{1}, \ldots, a_{n} \in \mathbb{R}$, it is well-known that

$$
\min _{x \in \mathbb{R}} \sum_{i=1}^{n}\left|x-a_{i}\right|^{\alpha}= \begin{cases}\operatorname{mean}\left(a_{i}\right) & \text { if } \alpha=2 \\ \operatorname{median}\left(a_{i}\right) & \text { if } \alpha=1 \\ \operatorname{mode}\left(a_{i}\right) & \text { if } \alpha=0\end{cases}
$$

More generally, the very early work of Barral [14] investigated

$$
\min _{x \in \mathbb{R}} \sum_{i=1}^{n} w_{i}\left|x-a_{i}\right|^{\alpha}, \quad w_{i} \geq 0, \alpha=0,1,2, \infty
$$

Also, $[15,16]$ developed local M-estimator filters based on such minimizers.
This work was inspired by two variational problems arising in image research. One is soft wavelet thresholding [2, 8] or basis pursuit [3] arising in compressed sensing. The other is the Rudin-Osher-Fatemi (ROF) model [1] of TV-based image denoising and generalizations. The first involves reducing $E(x)=\sum_{i=1}^{n} w_{i}\left|x-a_{i}\right|+F(x)$ to its simplest terms: the scalar problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}} E(x)=|x|+\lambda(x-f)^{2}, \quad \lambda>0 . \tag{1.1}
\end{equation*}
$$

The solution to (1.1) is obtained from a simple formula: $x_{o p t}=\operatorname{shrink}\left(f, \frac{1}{2 \lambda}\right)$, where the shrink operator can be found in figure 1.1

It turns out that

$$
\begin{equation*}
\operatorname{shrink}\left(f, \frac{1}{2 \lambda}\right)=\operatorname{median}\left\{f-\frac{1}{2 \lambda}, 0, f+\frac{1}{2 \lambda}\right\} . \tag{1.2}
\end{equation*}
$$

This seems (surprisingly) to be a new result. We generalize it below.

[^0]
[^0]: *Received: May 24, 2009; accepted (in revised version): July 20, 2009. Communicated by Martin Burger.
 \dagger UCLA Department of Mathematics, Los Angeles, CA, 90095-1555 (yingyingli@math.ucla.edu).
 \ddagger UCLA Department of Mathematics, Los Angeles, CA, 90095-1555 (sjo@math.ucla.edu). This research was supported by ONR Grant N00014710810 and the Department of Defense.

