Yang-Mills on Surfaces with Boundary: Quantum Theory and Symplectic Limit

Ambar Sengupta

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803-4918, USA. E-mail: sengupta@math.lsu.edu

Received: 30 June 1996 / Accepted: 22 July 1996

Abstract: The quantum field measure for gauge fields over a compact surface with boundary, with holonomy around the boundary components specified, is constructed. Loop expectation values for general loop configurations are computed. For a compact oriented surface with one boundary component, let $\mathcal{M}(\Theta)$ be the moduli space of flat connections with boundary holonomy lying in a conjugacy class Θ in the gauge group G. We prove that a certain natural closed 2-form on $\mathcal{M}(\Theta)$, introduced in an earlier work by C. King and the author, is a symplectic structure on the generic stratum of $\mathcal{M}(\Theta)$ for generic Θ . We then prove that the quantum Yang-Mills measure, with the boundary holonomy constrained to lie in Θ , converges in a natural sense to the corresponding symplectic volume measure in the classical limit. We conclude with a detailed treatment of the case G = SU(2), and determine the symplectic volume of this moduli space.

1. Introduction and Overview of Results

This paper presents the construction of a quantum gauge field measure over compact surfaces, with specified boundary holonomies, and a determination of the classical limit of this measure when the surface is oriented and has one boundary component.

<u>Results concerning the quantum field measure</u>. The construction of the measure and determination and study of the loop expectation values are carried out in Sects. 1–5. In these sections:

- (i) We <u>construct</u> the Euclidean <u>quantum field measure for gauge theory</u> over a compact surface with boundary, with <u>boundary holonomy</u> (or its conjugacy class) <u>specified</u> (the gauge group is a compact connected Lie group).
- (ii) <u>Loop expectation values are computed explicitly</u>, and it is shown that they are invariant under appropriate area-preserving surface homeomorphisms.