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Abstract: We introduce a certain cellular algebra Q(n, r) which is a quotient of the
g-Schur algebra Sq(n,r). This is naturally equipped with a canonical basis which
is compatible with Lusztig's canonical bases for certain modules for the quantized
enveloping algebra U(sln). We describe a diagram calculus for Q(n, r) which makes
calculations involving the corresponding canonical bases easy to understand.

1. Introduction

The g-Schur algebra Sg(n, r), which was introduced by Dipper and James in [2], is
a certain finite-dimensional associative algebra over the ring of Laurent polynomials
A = Z[v, t;"1]. Du [3] has described a certain natural free .4-basis {6™^} for the q-
Schur algebra, which we shall refer to as the canonical basis. It is known [8, Corollary
4.7] that the structure constants with respect to this basis have interpretations in the
framework of perverse sheaves and intersection cohomology. It is also known (see for
example [5, Theorem 4.6]) that the basis {0™^} is very closely related to Lusztig's
canonical bases for modules quantized enveloping algebras, which were defined in [9].
These bases have turned out to be very important in representation theory.

In Sect.2 we define and study a certain quotient Q(n, r) of 5^(n, r) which inherits
a basis from the basis {^A«} of Sq(n, r). This quotient Q(n, r) is closely related to the
Temperley-Lieb algebra TLr of type A. Using the main result of [6], we show that the
multiplication in Q(n, r) can be easily described in terms of a diagram calculus which
is an extension of the r-diagram calculus for the Temperley-Lieb algebra (described
for example in [12, Sect. 1]). Furthermore, the diagrams can be interpreted as canonical
basis elements of Sq(n, r).

In Sect. 3 we describe the cellular structure of Q(n, r) (in the sense of [7]) and
classify the absolutely irreducible modules for Q(n, r) over a field.
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