© Springer-Verlag1997

Classification of N-(Super)-Extended Poincaré Algebras and Bilinear Invariants of the Spinor Representation of Spin(p,q)

D.V. Alekseevsky^{1,*}, V. Cortés^{2,**}

¹ Max-Planck-Institut für Mathematik, Gottfried-Claren-Str. 26, D-53225 Bonn, Germany

Received: 4 December 1995 / Accepted: 16 May 1996

Abstract: We classify extended Poincaré Lie super algebras and Lie algebras of any signature (p, q), that is Lie super algebras (resp. \mathbb{Z}_2 -graded Lie algebras) $\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$, where $\mathfrak{g}_0 = \mathfrak{so}(V) + V$ is the (generalized) Poincaré Lie algebra of the pseudo-Euclidean vector space $V = \mathbb{R}^{p,q}$ of signature (p,q) and $\mathfrak{g}_1 = S$ is the spinor $\mathfrak{so}(V)$ -module extended to a \mathfrak{g}_0 -module with kernel V. The remaining super commutators $\{\mathfrak{g}_1,\mathfrak{g}_1\}$ (respectively, commutators $[\mathfrak{g}_1,\mathfrak{g}_1]$) are defined by an $\mathfrak{so}(V)$ -equivariant linear mapping

$$\vee^2 \mathfrak{g}_1 \to V$$
 (respectively, $\wedge^2 \mathfrak{g}_1 \to V$).

Denote by $\mathcal{P}^+(n,s)$ (respectively, $\mathcal{P}^-(n,s)$) the vector space of all such Lie super algebras (respectively, Lie algebras), where $n=p+q=\dim V$ and s=p-q is the classical signature. The description of $\mathcal{P}^\pm(n,s)$ reduces to the construction of all $\mathfrak{so}(V)$ -invariant bilinear forms on S and to the calculation of three \mathbb{Z}_2 -valued invariants for some of them.

This calculation is based on a simple explicit model of an irreducible Clifford module S for the Clifford algebra $Cl_{p,q}$ of arbitrary signature (p,q). As a result of the classification, we obtain the numbers $L^{\pm}(n,s)=\dim \mathcal{P}^{\pm}(n,s)$ of independent Lie super algebras and algebras, which take values 0,1,2,3,4 or 6. Due to Bott periodicity, $L^{\pm}(n,s)$ may be considered as periodic functions with period 8 in each argument. They are invariant under the group Γ generated by the four reflections with respect to the axes n=-2, n=2, s-1=-2 and s-1=2. Moreover, the reflection $(n,s)\to (-n,s)$ with respect to the axis n=0 interchanges L^+ and L^- :

$$L^+(-n,s)=L^-(n,s).$$

² Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, CA 94720-5070, USA

^{*} E-mail: daleksee@mpim-bonn.mpg.de; supported by Max-Planck-Institut für Mathematik (Bonn)

^{**} E-mail: vicente@rhein.iam.uni-bonn.de; supported by the Alexander von Humboldt Foundation, MSRI (Berkeley) and SFB 256 (Bonn University)