Extensions of the Matrix Gelfand–Dickey Hierarchy from Generalized Drinfeld–Sokolov Reduction

László Fehér^{1,*}, Ian Marshall²

¹ Department of Physics, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, U.K.
² Department of Mathematics, Leeds University, Leeds LS2 9JT, U.K.
E-mail: amt6im@amsta.leeds.ac.uk

Received: 10 April 1995/Accepted: 11 July 1996

Abstract: The $p \times p$ matrix version of the r-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra $\widehat{gl}_{pr} \otimes \mathbb{C}[\lambda, \lambda^{-1}]$. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algebra $\widehat{gl}_{pr+s} \otimes \mathbb{C}[\lambda, \lambda^{-1}]$ using the natural embedding $gl_{pr} \subset gl_{pr+s}$ for s any positive integer. The hierarchies obtained admit a description in terms of a $p \times p$ matrix pseudo-differential operator comprising an r-KdV type positive part and a non-trivial negative part. This system has been investigated previously in the p = 1 case as a constrained KP system. In this paper the previous results are considerably extended and a systematic study is presented on the basis of the Drinfeld-Sokolov approach that has the advantage that it leads to local Poisson brackets and makes clear the conformal (\mathcal{W} -algebra) structures related to the KdV type hierarchies.

0. Introduction

This paper is a continuation of [1], where it was shown how the matrix Gelfand-Dickey hierarchy [2, 3] fits into the Drinfeld-Sokolov approach [4] (see also [5– 9]) to generalized KdV hierarchies.

The phase space of the matrix Gelfand–Dickey hierarchy is the space of $p \times p$ matrix Lax operators

$$L_{p,r} = P\partial^r + u_1\partial^{r-1} + \dots + u_{r-1}\partial + u_r, \quad u_i \in C^{\infty}(S^1, gl_p), \qquad (0.1)$$

where P is a diagonal constant matrix with distinct, non-zero entries. This phase space has two compatible Poisson brackets: the linear and quadratic matrix Gelfand-Dickey Poisson brackets. The Hamiltonians generating a commuting hierarchy of bihamiltonian flows are obtained from the residues of the componentwise fractional

^{*} On leave from Theoretical Physics Department of Szeged University, H-6720 Szeged, Hungary