The Estimates of Periodic Potentials in Terms of Effective Masses

E. Korotyaev*

Math. Dept. 2, ETU, 5 Prof. Popov Str., St. Petersburg, 197376, Russia. E-mail: evgeni@niif.spb.su

Received: 27 February 1996/Accepted: 27 June 1996

Abstract

Let $G_{n}=\left(A_{n}^{-}, A_{n}^{+}\right), n \geqq 1$, denote the gaps, $M_{n}^{ \pm}$be the effective masses and $\Sigma_{n}=\left[A_{n-1}^{+}, A_{n}^{-}\right], A_{0}^{+}=0$, be the spectral bands of the Hill operator $T=$ $-d^{2} / d x^{2}+V(x)$ in $L^{2}(\mathbf{R})$, where V is a 1 -periodic real potential from $L^{2}(0,1)$. Let the length gap $L_{n}=\left|G_{n}\right|, h_{n}$ be the height of the corresponding slit on the quasimomentum domain and $\Delta_{n}=\pi^{2}(2 n-1)-\left|\Sigma_{n}\right|>0$ be the band reduction. Let $l_{n}=\sqrt{A_{n}^{+}}-\sqrt{A_{n}^{-}}, n \geqq 1$, denote the gap length for the operator $\sqrt{T} \geqq 0$. Introduce the sequences $L=\left\{L_{n}\right\}, h=\left\{h_{n}\right\}, l=\left\{l_{n}\right\}, \Delta=\left\{\Delta_{n}\right\}, M^{ \pm}=\left\{M_{n}^{ \pm}\right\}$and the norms $\|f\|_{m}^{2}=\sum_{n>0}(2 \pi n)^{2 m} f_{n}^{2}, m \geqq 0$. The following results are obtained: i) The estimates of $\|V\|,\|L\|,\|h\|_{1},\|l\|_{1},\|\Delta\|$ in terms of $\left\|M^{ \pm}\right\|_{2}$, ii) identities for the Dirichlet integral of quasimomentum and integral of potentials and so on, iii) the generation of i), ii) for more general potentials.

1. Introduction

Let us consider the Hill operator $T=-d^{2} / d x^{2}+V(x)$ in $L^{2}(\mathbf{R})$, where V is a 1 -periodic real potential from $L^{1}(0,1)$. It is well known that the spectrum of T is absolutely continuous and consists of intervals $\Sigma_{1}, \Sigma_{2}, \ldots$. Here $\Sigma_{n}=$ $\left[A_{n-1}^{+}, A_{n}^{-}\right], \ldots, A_{n-1}^{+}<A_{n}^{-} \leqq A_{n}^{+}, n \geqq 1$, and let $A_{0}^{+}=0$. These intervals are separated by the gaps G_{1}, G_{2}, \ldots, where $G_{n}=\left(A_{n}^{-}, A_{n}^{+}\right)$. If a gap degenerates, i.e. $G_{n}=\emptyset$, then the corresponding segments Σ_{n}, Σ_{n+1} merge. Let $\varphi(x, E), \vartheta(x, E)$ be the solutions of the equation

$$
\begin{equation*}
-f^{\prime \prime}+V f=E f, \quad E \in \mathbf{C} \tag{1.1}
\end{equation*}
$$

satisfying $\varphi^{\prime}(0, E)=\vartheta(0, E)=1$ and $\varphi(0, E)=\vartheta^{\prime}(0, E)=0$. We define the Lyapunov function $F(E)=\left(\varphi^{\prime}(1, E)+\vartheta(1, E)\right) / 2$. The sequence $A_{0}^{+}<A_{1}^{-} \leqq A_{1}^{+}<\cdots$ is the spectrum of Eq. (1.1) with the periodic boundary conditions of period 2, i.e. $f(x+2)=f(x), x \in \mathbf{R}$. Here the equality means that $A_{n}^{-}=A_{n}^{+}$is the double eigenvalue. We note that $F\left(A_{n}^{ \pm}\right)=(-1)^{n}, n \geqq 1$. The lowest eigenvalue A_{0}^{+}is simple, $F\left(A_{0}^{+}\right)=1$, and the corresponding eigenfunction has period 1 . The eigenfunctions

[^0]
[^0]: \star The research described in this publication was made possible in part by grant from the Russian Fund of Fundamental Research and INTAS.

